27 research outputs found

    Search for Tetraneutron by Pion Double Charge Exchange Reaction at J-PARC

    Full text link
    Tetraneutron (4n^4n) has come back in the limelight, because of recent observation of a candidate resonant state at RIBF. We propose to investigate the pion double charge exchange (DCX) reaction, i.e. 4He(π,π+)^4\mathrm{He}({\pi}^- , {\pi}^+), as an alternative way to populate tetraneutron. An intense π{\pi}^- beam with the kinetic energy of ~850 MeV, much higher than that in past experiments at LAMPF and TRIUMF, will open up a possibility to improve the experimental sensitivity of the formation cross section, which will be much smaller than hitherto known DCX cross sections such as 9Be(π,π+)9He (g.s.)^9\mathrm{Be}({\pi}^-, {\pi}^+)^9\mathrm{He}\ (g.s.).Comment: 4 pages, 1 figure; proceedings of the 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU2016), Kyoto, Japan, 25-30 July 201

    Fundamental physics activities with pulsed neutron at J-PARC(BL05)

    Full text link
    "Neutron Optics and Physics (NOP/ BL05)" at MLF in J-PARC is a beamline for studies of fundamental physics. The beamline is divided into three branches so that different experiments can be performed in parallel. These beam branches are being used to develop a variety of new projects. We are developing an experimental project to measure the neutron lifetime with total uncertainty of 1 s (0.1%). The neutron lifetime is an important parameter in elementary particle and astrophysics. Thus far, the neutron lifetime has been measured by several groups; however, different values are obtained from different measurement methods. This experiment is using a method with different sources of systematic uncertainty than measurements conducted to date. We are also developing a source of pulsed ultra-cold neutrons (UCNs) produced from a Doppler shifter are available at the unpolarized beam branch. We are developing a time focusing device for UCNs, a so called "rebuncher", which can increase UCN density from a pulsed UCN source. At the low divergence beam branch, an experiment to search an unknown intermediate force with nanometer range is performed by measuring the angular dependence of neutron scattering by noble gases. Finally the beamline is also used for the research and development of optical elements and detectors. For example, a position sensitive neutron detector that uses emulsion to achieve sub-micrometer resolution is currently under development. We have succeeded in detecting cold and ultra-cold neutrons using the emulsion detector.Comment: 9 pages, 5 figures, Proceedings of International Conference on Neutron Optics (NOP2017

    Beam and SKS spectrometers at the K1.8 beam line

    Get PDF
    High-resolution spectrometers for both incident beams and scattered particles have been constructed at the K1.8 beam line of the Hadron Experimental Facility at J-PARC. A point-to-point optics is realized between the entrance and exit of QQDQQ magnets for the beam spectrometer. Fine-pitch wire chamber trackers and hodoscope counters are installed in the beam spectrometer to accept a high rate beam up to 107 Hz. The superconducting kaon spectrometer for scattered particles was transferred from KEK with modifications to the cryogenic system and detectors. A missing-mass resolution of 1.9 ± 0.1 MeV/c2 (FWHM) was achieved for the ∑ peaks of (π±, K+) reactions on a proton target in the first physics run of E19 in 2010

    Experimental searches for antikaonic clusters

    Get PDF
    The existence of antikaonic nuclear clusters, quasi-bound systems composed of an antikaon and a nucleus, is an important issue both theoretically and experimentally. By using all available experimental data, which are rather old and poor in statistics, a qualitative theoretical consensus is that antikaon nucleus interaction is attractive and strongly absorptive. However, there remain large uncertainties in quantitative estimates on these strengths, which prevents from drawing a definite conclusion. In the experimental side, new data are recently accumulated. Here I summarize the present experimental status on the antikaonic clusters mainly obtained in stopped K− reactions

    Strangeness Nuclear Physics at J-PARC

    Get PDF
    After the big earthquake in the east part of Japan on March 11, 2011, the beams in the hadron experimental hall at J-PARC have been successfully recovered in February, 2012. The experimental program using pion beams is now on-going with the primary proton beam power of ~5 kW. Before a long summer shutdown scheduled in 2013, several experiments in strangeness nuclear physics are going to take data. In this period, we anticipate the beam power would exceed 10 kW and the experiments to use K[-] beams will start. The experimental program is explained briefly
    corecore