5 research outputs found

    Diclofenac Inhibits Tumor Growth in a Murine Model of Pancreatic Cancer by Modulation of VEGF Levels and Arginase Activity

    Get PDF
    BACKGROUND: Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A(2) (PLA(2)), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. METHODOLOGY/PRINCIPAL FINDINGS: We found that diclofenac treatment (30 mg/kg/bw for 11 days) of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. CONCLUSION/SIGNIFICANCE: In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion

    The addition of vildagliptin to metformin prevents the elevation of interleukin 1ß in patients with type 2 diabetes and coronary artery disease: a prospective, randomized, open-label study

    No full text
    Abstract Background Patients with type 2 diabetes present with an accelerated atherosclerotic process. Animal evidence indicates that dipeptidyl peptidase-4 inhibitors (gliptins) have anti-inflammatory and anti-atherosclerotic effects, yet clinical data are scarcely available. Design and methods A prospective, randomized, open-label study was performed in 60 patients with coronary artery disease (CAD) and type 2 diabetes, who participated in a cardiac rehabilitation program. After a washout period of 3 weeks, patients were randomized in a 2:1 ratio to receive combined vildagliptin/metformin therapy (intervention group: n = 40) vs. metformin alone (control group: n = 20) for a total of 12 weeks. Blinded assessment of interleukin-1ß (IL-1ß, the primary endpoint), hemoglobin A1c (HbA1c), and high sensitivity C reactive protein (hsCRP), were performed at baseline and after 12 weeks. Results Mean age of study patients was 67 ± 9 years, 75% were males, and baseline HbA1c and inflammatory markers levels were similar between the two groups. At 12 weeks of follow up, levels of IL-1ß, hsCRP, and HbA1c were significantly lower in the intervention group as compared with the control group. There was a continuous elevation of IL-1ß among the control group, which was not observed in the intervention group (49 vs. 4%, respectively; p < 0.001). The hsCRP was lowered by 60% in the vildagliptin/metformin group vs. 23% in the metformin group (p < 0.01). Moreover, a significant relative reduction of the HbA1c was seen in the intervention group (7% reduction, p < 0.03). Conclusion The addition of vildagliptin to metformin treatment in patients with type 2 diabetes and CAD led to a significant suppression of the IL-1ß elevation during follow up. A significant relative reduction of hsCRP and HbA1c in the intervention group was also observed. Trial registration NCT0160421

    The Origin of Human Mesenchymal Stromal Cells Dictates Their Reparative Properties

    Get PDF
    BACKGROUND: Human mesenchymal stromal cells (hMSCs) from adipose cardiac tissue have attracted considerable interest in regard to cell‐based therapies. We aimed to test the hypothesis that hMSCs from the heart and epicardial fat would be better cells for infarct repair. METHODS AND RESULTS: We isolated and grew hMSCs from patients with ischemic heart disease from 4 locations: epicardial fat, pericardial fat, subcutaneous fat, and the right atrium. Significantly, hMSCs from the right atrium and epicardial fat secreted the highest amounts of trophic and inflammatory cytokines, while hMSCs from pericardial and subcutaneous fat secreted the lowest. Relative expression of inflammation‐ and fibrosis‐related genes was considerably higher in hMSCs from the right atrium and epicardial fat than in subcutaneous fat hMSCs. To determine the functional effects of hMSCs, we allocated rats to hMSC transplantation 7 days after myocardial infarction. Atrial hMSCs induced greatest infarct vascularization as well as highest inflammation score 27 days after transplantation. Surprisingly, cardiac dysfunction was worst after transplantation of hMSCs from atrium and epicardial fat and minimal after transplantation of hMSCs from subcutaneous fat. These findings were confirmed by using hMSC transplantation in immunocompromised mice after myocardial infarction. Notably, there was a correlation between tumor necrosis factor‐α secretion from hMSCs and posttransplantation left ventricular remodeling and dysfunction. CONCLUSIONS: Because of their proinflammatory properties, hMSCs from the right atrium and epicardial fat of cardiac patients could impair heart function after myocardial infarction. Our findings might be relevant to autologous mesenchymal stromal cell therapy and development and progression of ischemic heart disease
    corecore