7 research outputs found

    Age-dependent alterations in the inflammatory response to pulmonary challenge

    Get PDF
    The aging lung is increasingly susceptible to infectious disease. Changes in pulmonary physiology and function are common in older populations, and in those older than 60 years, pneumonia is the major cause of infectious death. Understanding age-related changes in the innate and adaptive immune systems, and how they affect both pulmonary and systemic responses to pulmonary challenge are critical to the development of novel therapeutic strategies for the treatment of the elderly patient. In this observational study, we examined age-associated differences in inflammatory responses to pulmonary challenge with cell wall components from Gram-positive bacteria. Thus, male Sprague-Dawley rats, aged 6 months or greater than 18 months (approximating humans of 20 and 55-65 years), were challenged, intratracheally, with lipoteichoic acid and peptidoglycan. Cellular and cytokine evaluations were performed on both bronchoalveolar lavage fluid (BAL) and plasma, 24 h post-challenge. The plasma concentration of free thyroxine, a marker of severity in non-thyroidal illness, was also evaluated. The older animals had an increased chemotactic gradient in favor of the airspaces, which was associated with a greater accumulation of neutrophils and protein. Furthermore, macrophage migration inhibitory factor (MIF), an inflammatory mediator and putative biomarker in acute lung injury, was increased in both the plasma and BAL of the older, but not young animals. Conversely, plasma free thyroxine, a natural inhibitor of MIF, was decreased in the older animals. These findings identify age-associated inflammatory/metabolic changes following pulmonary challenge that it may be possible to manipulate to improve outcome in the older, critically ill patient

    Immune-Mediated Disease Flares or New-Onset Disease in 27 Subjects Following mRNA/DNA SARS-CoV-2 Vaccination

    Get PDF
    Background: Infectious diseases and vaccines can occasionally cause new-onset or flare of immune-mediated diseases (IMDs). The adjuvanticity of the available SARS-CoV-2 vaccines is based on either TLR-7/8 or TLR-9 agonism, which is distinct from previous vaccines and is a common pathogenic mechanism in IMDs. Methods: We evaluated IMD flares or new disease onset within 28-days of SARS-CoV-2 vaccination at five large tertiary centres in countries with early vaccination adoption, three in Israel, one in UK, and one in USA. We assessed the pattern of disease expression in terms of autoimmune, autoinflammatory, or mixed disease phenotype and organ system affected. We also evaluated outcomes. Findings: 27 cases included 17 flares and 10 new onset IMDs. 23/27 received the BNT - 162b2 vaccine, 2/27 the mRNA-1273 and 2/27 the ChAdOx1 vaccines. The mean age was 54.4 ± 19.2 years and 55% of cases were female. Among the 27 cases, 21 (78%) had at least one underlying autoimmune/rheumatic disease prior the vaccination. Among those patients with a flare or activation, four episodes occurred after receiving the second-dose and in one patient they occurred both after the first and the second-dose. In those patients with a new onset disease, two occurred after the second-dose and in one patient occurred both after the first (new onset) and second-dose (flare). For either dose, IMDs occurred on average 4 days later. Of the cases, 20/27 (75%) were mild to moderate in severity. Over 80% of cases had excellent resolution of inflammatory features, mostly with the use of corticosteroid therapy. Other immune-mediated conditions included idiopathic pericarditis (n = 2), neurosarcoidosis with small fiber neuropathy (n = 1), demyelination (n = 1), and myasthenia gravis (n = 2). In 22 cases (81.5%), the insurgence of Adverse event following immunization (AEFI)/IMD could not be explained based on the drug received by the patient. In 23 cases (85.2%), AEFI development could not be explained based on the underlying disease/co-morbidities. Only in one case (3.7%), the timing window of the insurgence of the side effect was considered not compatible with the time from vaccine to flare. Interpretation: Despite the high population exposure in the regions served by these centers, IMDs flares or onset temporally-associated with SARS-CoV-2 vaccination appear rare. Most are moderate in severity and responsive to therapy although some severe flares occurred. Funding: none
    corecore