7 research outputs found

    Determinação da velocidade de condução nervosa motora dos nervos radial e ulnar de cães clinicamente sadios Determination of the motor nerve conduction velocity of the radial and ulnar nerves in clinically normal dogs

    No full text
    O presente trabalho teve como objetivo a padronização dos valores de referência de velocidade de condução nervosa motora dos nervos radial e ulnar em cães clinicamente sadios. Para tanto, foram utilizados 30 cães, 11 machos e 19 fêmeas, sem raça definida, com idade entre dois e seis anos. Os valores médios das medidas do potencial muscular produzidos por meio de estimulação proximal e distal do nervo radial foram, respectivamente: latência inicial, 2,46+0,72ms e 1,58+0,62ms, amplitude de pico a pico, 8,79+2,26mV e 9,52+2,42mV e duração, 2,85+0,76ms e 2,71+0,75ms. Os respectivos valores do nervo ulnar foram: latência inicial, 4,17+0,53ms e 2,67+0,38ms; amplitude de pico a pico, 10,72+2,60mV e 11,72+2,81mV e duração, 2,23+0,38ms e 2,04+0,35ms. Os valores médios das medidas de velocidade de condução nervosa motora dos nervos radial e ulnar foram, respectivamente, 66,18+7,26m/s e 60,50+7,86m/s.<br>The radial and ulnar nerves were examined electrophysiologically in 30 normal mongrel dogs, 11 males and 19 females, aged between two and six years. The proximal and distal evoked muscle potentials of motor stimulation of the radial nerve had an average latency of 2.46+0.72ms and 1.58+0.62ms, an average amplitude of 8.79+2.26mV and 9.52+2.42mV, and an average duration of 2.85+0.76ms and 2.71+0.75ms, respectively. The proximal and distal evoked muscle potentials of motor stimulation of the ulnar nerve had an average latency of 4.17+0.53ms and 2.67+0.38ms, an average amplitude of 10.72+2.60mV and 11.72+2.81mV, and an average duration of 2.23+0.38ms and 2.04+0.35ms, respectively. The average motor conduction velocity was 66.18+7.26m/s for the radial nerve and 60.50+7.86m/s for the ulnar nerve

    Hacking the quantum revolution: 1925–1975

    No full text
    I argue that the quantum revolution should be seen as an Ian Hacking type of scientific revolution: a profound, longue durée, multidisciplinary process of transforming our understanding of physical nature, with deep-rooted social components from the start. The “revolution” exhibits a characteristic style of reasoning – the hierarchization of physical nature – and developed and uses a specific language – quantum field theory (QFT). It is by virtue of that language that the quantum theory has achieved some of its deepest insights into the description of the dynamics of the physical world. However, the meaning of what a quantum field theory is and what it describes has deeply altered, and one now speaks of “effective” quantum field theories. Interpreting all present day quantum field theories as but “effective” field theories sheds additional light on Phillip Anderson’s assertion that “More is different”. This important element is addressed in the last part of the paper

    Hacking the quantum revolution: 1925–1975

    No full text
    corecore