8 research outputs found

    Illuminating the Anticancerous Efficacy of a New Fungal Chassis for Silver Nanoparticle Synthesis

    Get PDF
    Biogenic silver nanoparticles (Ag NPs) have supple platforms designed for biomedical and therapeutic intervention. Utilization of Ag NPs are preferred in the field of biomedicines and material science research because of their antioxidant, antimicrobial, and anticancerous activity along with their eco-friendly, biocompatible, and cost-effective nature. Here we present a novel fungus Piriformospora indica as an excellent source for obtaining facile and reliable Ag NPs with a high degree of consistent morphology. We demonstrated their cytotoxic property, coupled with their intrinsic characteristic that make these biogenic nanoparticles suitable for the anticancerous activity. In vitro cytotoxicity of biologically synthesized Ag NPs (BSNPs) and chemically synthesized Ag NPs (SNPs) was screened on various cancer cell lines, such as Human breast adenocarcinoma (MCF-7), Human cervical carcinoma (HeLa), Human liver hepatocellular carcinoma (HepG2) cell lines and embryonic kidney cell line (HEK-293) as normal cell lines. The antiproliferative outcome revealed that the BSNPs exhibited significant cytotoxic activity against MCF-7 followed by HeLa and HepG2 cell lines as compared to SNPs. The blend of cytotoxic properties, together with green and cost-effective characteristics make up these biogenic nanoparticles for their potential applications in cancer nanomedicine and fabrication coating of ambulatory and non-ambulatory medical devices

    Evaluating bionanoparticle infused fungal metabolites as a novel antimicrobial agent

    No full text
    Therapeutic properties of fungal metabolites and silver nanoparticles have been well documented. While fungal metabolites have been used for centuries as medicinal drugs, potential of biogenic silver nanoparticles has recently received attention. We have evaluated the antimicrobial potential of Aspergillus terreus crude extract, silver nanoparticles and an amalgamation of both against four pathogenic bacterial strains. Antimicrobial activity of the following was evaluated – A. terreus extract, biogenic silver nanoparticles, and a mixture containing extract and nanoparticles. Four pathogenic bacteria - Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Bacillus cereus were used as test organisms. Phenol, flavonoid, and alkaloid content of extract were determined to understand the chemical profile of the fungus. The extract contained significantly high amounts of phenols, flavonoids, and alkaloids. The extract and biogenic silver nanoparticle exhibited significant antibacterial activity at concentrations of 10 μg/ml and 1 μg/ml, respectively. When used in combination, the extract-nanoparticle mixture showed equally potent antibacterial activity at a much lower concentration of 2.5 μg/ml extract + 0.5 μg/ml nanoparticle. Given its high antibacterial potential, the fungal extract can be a promising source of novel drug lead compounds. The extract – silver nanoparticle mixture exhibited synergism in their antibacterial efficacy. This property can be further used to formulate new age drugs

    Identification of Chitin Degrading Bacterial Strains Isolated from Bulk and Rhizospheric Soil

    No full text
    The subsequent application of insecticides and pesticides in agriculture results in several health and environment issues. To overcome, such devastating effect of synthetic chemicals, an eco friendly measure is required. Chitinolytic bacteria and their enzymes can be adopted as potent substitutes to chemicals required controlling the agriculture loss. The aim of this research was to isolate bacterial strains with significant chitinase activity. Isolates were screened based on method viz. zone inhibition, colorimetric, biochemical and were identified based on 16S rDNA sequences. Observed chitinase activity was in range 0.181Uml-1 to 1.594Uml-1 with zone inhibition in the range of 6mm to 29mm. Among the recovered strains only two, MSCP10 and MSCW8 showed good response when tested against insect and showed 80% and 95% mortality respectively after 72 hours of treatment. Based on 16S rDNA sequencing, MSCP10 and MSCW8 exhibited similarity with Serratia marcescens strain S308 and Staphylococcaceae bacterium HDMd_5 respectively. Through insect bioassay it was concluded that these bacterial strains were effective against Lepidopteran insect P. xylostella

    Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial, and Photocatalytic Properties

    No full text
    Biogenic synthesis of metal nanoparticles is of considerable interest, as it affords clean, biocompatible, nontoxic, and cost-effective fabrication. Driven by their ability to withstand variable extremes of environmental conditions, several microorganisms, notably bacteria and fungi, have been investigated in the never-ending search for optimal nanomaterial production platforms. Here, we present a hitherto unexplored algal platform featuring <i>Chlorella pyrenoidosa</i>, which offers a high degree of consistency in morphology of synthesized silver nanoparticles. Using a suite of characterization methods, we reveal the intrinsic crystallinity of the algae-derived nanoparticles and the functional moieties associated with its surface stabilization. Significantly, we demonstrate the antibacterial and photocatalytic properties of these silver nanoparticles and discuss the potential mechanisms that drive these critical processes. The blend of photocatalytic and antibacterial properties coupled with their intrinsic biocompatibility and eco-friendliness make these nanoparticles particularly attractive for wastewater treatment

    Nanotechnology and Plant Extracts as a Future Control Strategy for Meat and Milk Products

    No full text
    Plant extracts, well known for their antibacterial and antioxidant activity, have potential to be widely used preservatives in the food industry as natural alternatives to numerous synthetic additives which have adverse impacts on health and the environment. Most plant compounds and extracts are generally recognized as safe (GRAS). The use of preservatives is of great importance for perishable foods such as meat and milk, which, along with their products, are commonly consumed food items globally. However, the bioavailability of plant compounds could be diminished by their interaction with food components, processing, and storage. Nanoencapsulation of plant extracts, especially essential oils, is an effective method for their application in food model systems. This technique increases the bioactivity of plant compounds by increasing their physical stability and reducing their size, without negative effects on organoleptic properties. Furthermore, a recent study showed that plant extracts act as good bioreductants for biosynthesis of nanoparticles. This so-called green synthesis method using plant extracts is a rapid, relatively inexpensive, safe, and efficient method for synthesis of nanoparticles including silver, gold, iron, lead, copper, cobalt, palladium, platinum, zinc, zinc oxide, titanium oxide, magnetite, and nickel. Some of these nanoparticles have antimicrobial potential which is why they are of great interest to the food industry. In this chapter, the nanoencapsulation of plant extracts and plant extract-mediated synthesis of nanoparticles and their potential application in order to improve the safety and quality and prolong the shelf life of meat and milk products are reviewed and discussed

    Image Cytometry: Current Applications and Future Trends

    No full text

    The Neuroanatomy of Pain and Pain Pathways

    No full text
    corecore