32 research outputs found

    Aerodynamic Characteristics of Three Deep-Stepped Planing-Tail Flying-Boat Hulls

    Get PDF
    An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of three deep-stepped planing-tail flying-boat hulls differing only in the amount of step fairing. The hulls were derived by increasing the unfaired step depth of a planing-tail hull of a previous aerodynamic investigation to a depth about 92 percent of the hull beam. Tests were also made on a transverse-stepped hull with an extended afterbody for the purpose of comparison and in order to extend and verify the results of a previous investigation. The investigation indicated that the extended afterbody hull had a minimum drag coefficient about the same as a conventional hull, 0.0066, and an angle-of-attack range for minimum drag coefficient of 0.0057 which was 14 percent less than the transverse stepped hull with extended afterbody; the hulls with step fairing had up to 44 percent less minimum drag coefficient than the transverse-stepped hull, or slightly more drag than a streamlined body having approximately the same length and volume. Longitudinal and lateral instability varied little with step fairing and was about the same as a conventional hull

    Aerodynamic Characteristics of a Refined Deep-step Planing-tail Flying-boat Hull with Various Forebody and Afterbody Shapes

    Get PDF
    An investigation was made in the Langley 300-mph 7- by 10-foot tunnel to determine the aerodynamic characteristics of a refined deep-step planing-tail hull with various forebody and afterbody shapes and, for comparison, a streamline body simulating the fuselage of a modern transport airplane. The results of the tests indicated that the configurations incorporating a forebody with a length-beam ratio of 7 had lower minimum drag coefficients than the configurations incorporating a forebody with length-beam ratio of 5. The lowest minimum drag coefficients, which were considerably less than that of a conventional hull and slightly less than that of a streamline body, were obtained on the length-beam-ratio-7 forebody, alone and with round center boom. Drag coefficients and longitudinal- and lateral-stability parameters presented include the interference of a 21-percent-thick support wing
    corecore