16 research outputs found
New Aspects of the Structure of d-Amino Acid Oxidase from Porcine Kidney in Solution: Molecular Dynamics Simulation and Photoinduced Electron Transfer
Mammalian d-amino acid oxidase (DAAO) plays an important role for d-serine metabolism in the brain and regulation of glutamatergic neurotransmission. In the present work, the structures in solution obtained by the methods of molecular dynamic simulation (MDS) and analyses of photoinduced electron transfer (ET) from aromatic amino acids to the excited isoalloxazine (Iso*) are described based upon our recent works, comparing among DAAO dimer, monomer, DAAO-benzoate (DAOB) complex dimer and monomer. The fluorescence lifetimes of DAAO and DAOB in the time domain of picoseconds and femtoseconds are used for the ET analyses as experimental data. The ET parameters (static dielectric constants near isoalloxazine (Iso), standard free energy gap (SFEG) between the photoproducts and reactants), ET rates, and related physical quantities (solvent reorganization energy, net electrostatic energy between the photoproducts and ionic groups in the proteins), in addition to MDS structures, are used to compare the protein structures. The structure of the DAOB dimer in solution obtained by MDS is substantially different from the crystal structure, and the structures of the two subunits are not equivalent in solution. The ET rates and related physical quantities also differ between the two subunits
Comparison of the monomer structure of the FMN-binding protein from <i>Desulfovibrio vulgaris</i> obtained by NMR and molecular dynamics simulation approaches
<div><p>Flavin mononucleotide (FMN)-binding proteins (FBPs) play an important role in the electron transport process in bacteria. In this study, the structures of the FBP from <i>Desulfovibrio vulgaris</i> (<i>Dv</i>FBP) (Miyazaki F) were compared between those obtained experimentally by nuclear magnetic resonance (NMR) spectroscopy and those derived from molecular dynamics simulations (MDSs). A high-residue root of mean square deviation (RMSD) was observed in residues located at both sides of the wings (Gly22, Glu23, Asp24, Ala59, Arg60, Asp61, Glu62, Gly75, Arg76, Asn77, Gly78 and Pro79), while a low-residue RMSD was found in residues located in a hollow of the structure (Asn12, Glu13, Gly14, Val15, Val16, Asn30, Thr31, Trp32, Asn33, Ser34, Gly69, Ser70, Arg71 and Lys72). Inter-planar angles between the Phe7 and Iso and between the Phe7 and Trp106 residues were remarkably different between the MDS- and NMR-derived <i>Dv</i>FBP structures. Distribution of the torsion angles around the covalent bonds in the aliphatic chain of FMN was similar in the MDS- and NMR-derived structures, except for those around the C1′–C2′ and C5′–O5′ bonds. Hydrogen bond formation between IsoO2 and the Gly49 or Gly50 peptide NH was formed in both the NMR- and MDS-derived structures. Overall, the MDS-derived structures were found to be considerably different from the NMR-derived structures, which must be considered when the photoinduced electron transfer in flavoproteins is analysed with MDS-derived structures.</p></div
open access www.bioinformation.net Hypothesis Volume 9(8)
Binding mode prediction of biologically active compounds from plant Salvia Miltiorrhiza as integrase inhibito
Simultaneous analyses of fluorescence decay and anisotropy decay in green fluorescent protein dimer from jellyfish Clytia gregaria : FRET and molecular dynamics simulation
Structural and dynamic behaviors of the green fluorescent protein dimer from jellyfish Clytia gregaria (cgGFP) were investigated by means of molecular dynamics (MD) simulation. Both neutral and ionic forms of the chromophore, p-hydroxybenzylideneimidazolinone (GYS) were considered. The partial atomic charges of the chromophore were derived by BCC and RESP approaches. The structures were compared between the anionic and neutral cgGFP, and between the two subunits (Sub A and Sub B) of the protein dimer. The observed fluorescence intensity and anisotropy decays were further analyzed with theoretical expressions by employing the atomic coordinates of neutral cgGFP obtained by MD simulation. It was assumed that the fluorescence quenching of GYSA and GYSB is ascribed to HB formations between heteroatoms of GYSs and nearby amino acids. Excellent agreement between the observed and calculated intensity decays, and the observed and calculated anisotropy decays were obtained with RESP1 model. The agreements were better in RESP model than those in BCC one. Mean quenching constants of GYSA and GYSB were 0.27 and 0.59 ns−1 overall MD snapshots with RESP1. Mean value of square of direction cosine between the two transition moments of GYSs was 0.74, and that of square of orientation factor was 0.53, and the FRET rates from GYSA to GYSB, and from GYSB to GYSA were 0.87 and 1.87 ns−1
Efficiency of membrane fusion inhibitors on different hemagglutinin subtypes: insight from a molecular dynamics simulation perspective
The challenge in vaccine development, along with drug resistance issues, has encouraged the search for new anti-influenza drugs targeting different viral proteins. Hemagglutinin (HA) glycoprotein, crucial in the viral replication cycle, has emerged as a promising therapeutic target. CBS1117 and JNJ4796 were reported to exhibit similar potencies against infectious group 1 influenza, which included H1 and H5 HAs; however, their potencies were significantly reduced against group 2 HA. This study aims to explore the molecular binding mechanisms and group specificity of these fusion inhibitors against both group 1 (H5) and group 2 (H3) HA influenza viruses using molecular dynamics simulations. CBS1117 and JNJ4796 exhibit stronger interactions with key residues within the H5 HA binding pocket compared to H3-ligand complexes. Hydrogen bonding and hydrophobic interactions involving residues, such as H381, Q401, T3251 (H5-CBS1117), T3181 (H5-JNJ4796), W212, I452, V482, and V522 predominantly contribute to stabilizing H5-ligand systems. In contrast, these interactions are notably weakened in H3-inhibitor complexes. Predicted protein-ligand binding free energies align with experimental data, indicating CBS1117 and JNJ4796's preference for heterosubtypic group 1 HA binding. Understanding the detailed atomistic mechanisms behind the varying potencies of these inhibitors against the two HA groups can significantly contribute to the development and optimization of effective HA fusion inhibitors. To accomplish this, the knowledge of the transition of HA from its pre- to post-fusion states, the molecular size of ligands, and their potential binding regions, could be carefully considered. Communicated by Ramaswamy H. Sarma</p