118 research outputs found

    High performance liquid chromatography/electrospray ionization mass spectrometry for simultaneous analysis of alkamides and caffeic acid derivatives from Echinacea purpurea extracts

    Get PDF
    Extracts of the plant Echinacea purpurea are widely used for medicinal purposes. Effective quality control of these extracts requires rapid methods to determine their chemical composition. A new method for analysis of caffeic acid derivatives and alkamides from Echinacea extracts has been developed. With this method, isomeric isobutylamides and 2-methylbutylamides can be distinguished, a capability that previously published methods have lacked. Quantitative analyses carried out with this method on E. purpurea extracts that have been stored for 18 months indicate that they contain caftaric acid, cichoric acid, and undeca-2Z,4E-diene-8,10-diynoic acid isobutylamide at concentrations of 0.7, 0.71 and 2.0 mg/mL, respectively

    Echinacea and its alkylamides: Effects on the influenza A-induced secretion of cytokines, chemokines, and PGE2 from RAW 264.7 macrophage-like cells

    Get PDF
    The goal of this study was to determine whether extracts and isolated alkylamides from Echinacea purpureawould be useful for prevention of the inflammatory response that accompanies infections with H1N1 influenza A. Seventeen extracts and 4 alkylamides were tested for the ability to inhibit production of cytokines, chemokines, and PGE2 from RAW 264.7 macrophage-like cells infected with the H1N1 influenza A strain PR/8/34. The alkylamides undeca-2Z,4E-diene-8,10-diynic acid isobutylamide, dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamide, dodeca-2E,4E-dienoic acid isobutylamide, and undeca-2E-ene-8,10-diynoic acid isobutylamide suppressed production of TNF-a and PGE2 from infected cells. Dodeca-2E,4E-dienoic acid isobutylamide was especially effective at inhibiting production of these mediators and also strongly inhibited production of G-CSF, CCL2/MCP-1, CCL3/MIP-1a and CCL5/RANTES. In contrast, the ethanol extracts (75%), which were prepared from dormant roots of E. purpurea grown in different locations throughout North Carolina, displayed a range of effects from suppression to stimulation of mediator production. Precipitation of the extracts with ethanol removed the stimulatory activity, however, even after precipitation; many of the extracts did not display any suppressive activity. Analysis of the extracts revealed slight variations in concentration of alkylamides, caftaric acid, and cichoric acid, but the activity of the extracts did not strongly correlate with concentrations of these compounds. Our in vitro experiments suggest that E. purpurea extracts have the potential for use in alleviating the symptoms and pathology associated with infections with influenza A; however, further study will be necessary to define procedures necessary to unmask the alkylamide activity in crude extracts

    Relative Importance of Basicity in the Gas Phase and in Solution for Determining Selectivity in Electrospray Ionization Mass Spectrometry

    Get PDF
    Electrospray ionization mass spectrometry is a critically important technique for the determination of small molecules, but its application for this purpose is complicated by its selectivity. For positive ion ESI-MS analysis of basic analytes, several investigators have pointed to the importance of analyte basicity as a source of selectivity. Currently, however, it is not known whether basicity in the gas phase or in solution is ultimately most important in determining responsiveness. The objective of these studies was to investigate the relative importance of basicity in solution and in the gas phase as factors that predict selectivity in positive ion ESI-MS analysis. ESI-MS response was compared for a diverse series of protonatable analytes in two different solvents, neat methanol and methanol with 0.5% acetic acid. A correlation was observed between analyte pKb and electrospray response. However, the response for the analytes with very high pKb values was significantly higher than would be expected based on concentration of the protonated form or the analyte in solution, and this higher response did not appear to result from gas-phase proton transfer reactions. Although all of the analytes investigated had higher gas-phase basicities than the solvent, their relative responses were not dictated by gas-phase basicity. Higher response was observed for all of the analytes studied in acidified methanol compared with neat methanol, and this higher response was most pronounced for weakly basic analytes. These findings support the use of analyte pKb for rational method development in ESI-MS analysis of small molecules

    Goldenseal (Hydrastis canadensis L.) Extracts Synergistically Enhance the Antibacterial Activity of Berberine via Efflux Pump Inhibition

    Get PDF
    Goldenseal (Hydrastis canadensis L.) is used to combat inflammation and infection. Its antibacterial activity in vitro has been attributed to its alkaloids, the most abundant of which is berberine. The goal of these studies was to compare the composition, antibacterial activity, and efflux pump inhibitory activity of ethanolic extracts prepared from roots and aerial portions of H. canadensis. Ethanolic extracts were prepared separately from roots and aerial portions of six H. canadensis plants. Extracts were analyzed for alkaloid concentration using LC-MS and tested for antimicrobial activity against Staphylococcus aureus (NCTC 8325-4) and for inhibition of ethidium bromide efflux. Synergistic antibacterial activity was observed between the aerial extract (FIC 0.375) and to a lesser extent the root extract (FIC 0.750) and berberine. The aerial extract inhibited ethidium bromide efflux from wild-type S. aureus but had no effect on the expulsion of this compound from an isogenic derivative deleted fornorA. Our studies indicate that the roots of H. canadensis contain higher levels of alkaloids than the aerial portions, but the aerial portions synergize with berberine more significantly than the roots. Furthermore, extracts from the aerial portions of H. canadensis contain efflux pump inhibitors, while efflux pump inhibitory activity was not observed for the root extract. The three most abundant H. canadensis alkaloids, berberine, hydrastine, and canadine, are not responsible for the efflux pump inhibitory activity of the extracts from H. canadensis aerial portions

    CodY-Mediated Regulation of the Staphylococcus aureus Agr System Integrates Nutritional and Population Density Signals

    Get PDF
    The Staphylococcus aureus Agr system regulates virulence gene expression by responding to cell population density (quorum sensing). When an extracellular peptide signal (AIP-III in strain UAMS-1, used for these experiments) reaches a concentration threshold, the AgrC-AgrA two-component regulatory system is activated through a cascade of phosphorylation events, leading to induction of the divergently transcribed agrBDCA operon and the RNAIII gene. RNAIII is a posttranscriptional regulator of numerous metabolic and pathogenesis genes. CodY, a global regulatory protein, is known to repress agrBDCA and RNAIII transcription during exponential growth in rich medium, but the mechanism of this regulation has remained elusive. Here we report that phosphorylation of AgrA by the AgrC protein kinase is required for the overexpression of the agrBDCAoperon and the RNAIII gene in a codY mutant during the exponential-growth phase, suggesting that the quorum-sensing system, which normally controls AgrC activation, is active even in exponential-phase cells in the absence of CodY. In part, such premature expression of RNAIII was attributable to higher-than-normal accumulation of AIP-III in a codY mutant strain, as determined using ultrahigh-performance liquid chromatography coupled to mass spectrometry. Although CodY is a strong repressor of the agr locus, CodY bound only weakly to the agrBDCA-RNAIII promoter region, suggesting that direct regulation by CodY is unlikely to be the principal mechanism by which CodY regulates agr and RNAIII expression. Taken together, these results strongly suggest that cell population density signals inducing virulence gene expression can be overridden by nutrient availability, a condition monitored by CodY

    Comparison of alkylamide yield in ethanolic extracts prepared from fresh versus dry Echinacea purpurea utilizing HPLC–ESI-MS

    Get PDF
    Echinacea purpurea (L.) Moench, a top selling botanical medicine, is currently of considerable interest due to immunomodulatory, anti-inflammatory, antiviral and cannabinoid receptor 2 (CB2) binding activities of its alkylamide constituents. The purpose of these studies was to comprehensively profile the alkylamide (alkamide) content of E. purpurea root, and to compare yields of alkylamide constituents resulting from various ethanolic extraction procedures commonly employed by the dietary supplements industry. To accomplish this goal, a high performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–ESI-MS) method was validated for quantitative analysis of several E. purpurea alkylamides. Using this method, at least 15 alkylamides were identified and it was shown that fresh and dry E. purpurea extracts prepared from equivalent amounts (dry weight) of roots, with exceptions, exhibited similar yield of specific alkylamides. However, the amount of total dissolved solids in the dry extract was higher (by 38%) than the fresh extract. Two extracts prepared from dried roots at different ratios of root:solvent (1:5, w:v and 1:11, w:v) were similar in yield of total dissolved solids, but, there were differences in quantities of specific alkylamides extracted using these two root:solvent ratios. In addition, the important bioactive dodecatetraenoic acid isobutylamides are fully extracted from dry E. purpurea root in 2 days, suggesting that the manufacturing practice of macerating Echinacea extracts for weeks may be unnecessary for optimal alkylamide extraction. Finally, the identification of a new alkylamide has been proposed. These results demonstrate the differences of the described extractions and utility of the analytical methods used to determine the wide-ranging individual alkylamide content of commonly consumed Echinacea extracts

    The relative influences of acidity and polarity on responsiveness of small organic molecules to analysis with negative ion electrospray ionization mass spectrometry (ESI-MS)

    Get PDF
    The purpose of the work presented here was to evaluate the influence of solution composition and analyte characteristics on responsiveness to analysis with negative ion electrospray ionization mass spectrometry. The responses of a series of structurally diverse acidic molecules were compared in various solvents. Response was generally observed to be higher in methanol than acetonitrile and response for all analytes was poorer when water was mixed with the organic solvent. A positive correlation between negative ion ESI-MS response and log P was observed when either acetonitrile or methanol was used as the electrospray solvent. This result was expected because analytes with significant nonpolar character should be particularly responsive to ESI-MS analysis due to their higher affinity for electrospray droplet surfaces. It was also predicted that highly acidic analytes would be most responsive to analysis with negative ion ESI-MS due to their tendency to form negative ions. However, for the analytes studied here, acidity was found not to have a consistent influence on ESI-MS response. Many of the highly acidic molecules were quite polar and, consequently, were poorly responsive. Furthermore, the deprotonated molecular ion was detected for a number of molecules with very high pKa values, which would not be expected to form negative ions in the bulk solution. Ultimately, these results indicate that acidity is not a conclusive parameter for prediction of the relative magnitudes of negative ion ESI-MS response among a diverse series of analytes. Analyte polarity does; however, appear to be useful for this purpose

    Maplexins, new a-glucosidase inhibitors from red maple (Acer rubrum) stems

    Get PDF
    Thirteen gallic acid derivatives including five new gallotannins, named maplexins A–E, were isolated from red maple (Acer rubrum) stems. The compounds were identified by spectral analyses. The maplexins varied in number and location of galloyl groups attached to 1,5-anhydro-d-glucitol. The isolates were evaluated for a-glucosidase inhibitory and antioxidant activities. Maplexin E, the first compound identified with three galloyl groups linked to three different positions of 1,5-anhydro-d-glucitol, was 20 fold more potent than the a-glucosidase inhibitory drug, Acarbose (IC50 = 8 vs 160 µM). Structure–activity related studies suggested that both number and position of galloyls attached to 1,5-anhydro-d-glucitol were important for a-glucosidase inhibition.Graphical abstractThirteen gallic acid derivatives, including five new gallotannins, 2, 3, 5, 6, 9, assigned the common names of maplexins A–E, respectively, were isolated from red maple stems. The isolates were evaluated for a-glucosidase inhibitory and antioxidant activities in vitro. [The original abstract for this article contains an image that cannot be displayed here. Please click on the link below to read the full abstract and article.]]]> 2012 English http://libres.uncg.edu/ir/uncg/f/N_Cech_Maplexins_2012.pdf oai:libres.uncg.edu/17449 2014-12-02T15:18:25Z UNCG Inhibition of H1N1 influenza A virus growth and induction of inflammatory mediators by the isoquinoline alkaloid berberine and extracts of goldenseal (Hydrastis canadensis) Cech, Nadja B. NC DOCKS at The University of North Carolina at Greensboro <![CDATA[In this study we tested whether the isoquinoline alkaloid berberine can inhibit the growth of influenza A. Our experiments showed strong inhibition of the growth of H1N1 influenza A strains PR/8/34 or WS/33 in RAW 264.7 macrophage-like cells, A549 human lung epithelial-derived cells and murine bone marrow derived macrophages, but not MDCK canine kidney cells. Studies of the mechanism underlying this effect suggest that berberine acts post-translationally to inhibit virus protein trafficking/maturation which in turn inhibits virus growth. Berberine was also evaluated for its ability to inhibit production of TNF-a and PGE2 from A/PR/8/34 infected-RAW 264.7 cells. Our studies revealed strong inhibition of production of both mediators and suggest that this effect is distinct from the anti-viral effect. Finally, we asked whether berberine-containing ethanol extracts of goldenseal also inhibit the growth of influenza A and production of inflammatory mediators. We found strong effectiveness at high concentrations, although upon dilution extracts were somewhat less effective than purified berberine. Taken together, our results suggest that berberine may indeed be useful for the treatment of infections with influenza A

    Echinacea alkylamides inhibit interleukin-2 production by Jurkat T cells

    Get PDF
    Alkylamides present in Echinacea species have reported immunomodulatory actions, yet their direct effects on T lymphocytes, key mediators of antiviral immunity, are poorly understood. We hypothesized that constituents present in ethanolic extracts of Echinacea species exert direct immunomodulatory effects on human Jurkat T cells. Modulation of IL-2 production by submaximally stimulated Jurkat cells was determined in response to treatment with extracts prepared from dried aerial parts of Echinacea purpurea. Cells were treated with the extracts, with alkylamides or caffeic acid derivatives isolated from Echinaceaspecies, or with corresponding ethanol vehicle, in the absence or presence of phytohemagglutinin and phorbal ester. E. purpurea extracted in a solvent mixture of 95:5 ethanol/water dose-dependently inhibited IL-2 production. This IL-2 inhibitory activity correlated with the presence of alkylamides but not caffeic acid derivatives, as determined by high performance liquid chromatography/electrospray ionization-mass spectrometry analysis. Simultaneous measurement of secreted IL-2 by ELISA and cell viability by the XTT assay showed that the 95:5 ethanol/water extract of E. purpurea was both IL-2 suppressive and cytotoxic at 50 and 100 µg/mL. Lower concentrations from 6.25 to 25 µg/mL significantly decreased IL-2 production but not cell viability. Alkylamides at concentrations found in a 50 µg/mL extract decreased IL-2 production by approximately 50%. Two Echinacea-derived alkylamides significantly depressed IL-2 production but not cell viability in a dose-dependent manner. Thus, alkylamides present in E. purpurea suppress the ability of activated Jurkat T cells to produce IL-2 independently of direct, cytotoxic effects

    Quantitative analysis of autoinducing peptide I (AIP-I) from Staphylococcus aureus cultures using ultrahigh performance liquid chromatography–high resolving power mass spectrometry

    Get PDF
    Staphylococcus aureus infections acquired in hospitals now cause more deaths per annum in the US than does HIV/AIDS. Perhaps even more alarming is the rise in community associated methicillin-resistant S. aureus (CA-MRSA) infections, which have spread out of hospital settings and are infecting otherwise healthy individuals. The mechanism of enhanced pathogenesis in CA-MRSA remains unclear, but it has been postulated that high activity in the agr quorum-sensing system could be a contributing factor. The purpose of this study was to develop a quantitative method for analysis of autoinducing peptide I (AIP-I), the activating signal for the agr system in S. aureus. An effective method was developed using ultrahigh performance liquid chromatography (UHPLC) coupled to electrospray ionization mass spectrometry with an LTQ Orbitrap mass spectrometer. Relying on the exceptional resolving power and mass accuracy of this instrument configuration, it was possible to quantify AIP-I directly from the complex growth media of S. aureus cultures with a limit of detection (LOD) of 0.25 µM and a linear dynamic range of 2.6 to 63 µM. The method was then employed to monitor time-dependent production of AIP-I by S. aureus cultures, and it was observed that AIP-I production reached a maximum and leveled off after approximately 16 h. Finally, it was determined that virulence of S. aureus was correlated with AIP-I production in some (but not all) strains analyzed
    • …
    corecore