100 research outputs found

    Direct-current output of silicon–organic monolayer–platinum Schottky TENGs: Elusive friction-output relationship

    Get PDF
    Triboelectric nanogenerators (TENGs) are an emerging energy harvesting technology able to convert ubiquitous mechanical energy into electricity. Friction, static charging and flexoelectricity are all involved in the mechanism underpinning TENG operation, but their relative contribution has remained elusive. Here we used dynamic and static conductive atomic force microscopy (C-AFM) measurements on monolayer-modified silicon crystals to detect evidence of a relationship between friction and zero-bias current, and between pressure and the direction of the putative flexovoltage. We demonstrate that a static electricity-related tribovoltage is probably responsible for a friction excess, and that surprisingly this friction excess is found to be dependent on the doping level and type of the silicon substrate. Such friction excess is however no longer measurable once current is allowed to flow across the junction. This observation points to an electrostatic origin of friction in silicon-based Schottky TENGs, and suggests that the zero external bias DC current is at least in part an electronic flow to neutralize static charges. Further, the sign of the zero-bias current, but not its magnitude, is independent of the semiconductor doping type, which is again suggestive of surface statics being a main contributor to the zero-bias output rather than exclusively a space-charge effect. We also reveal the presence of a junction flexovoltage under pressures common in AFM experiments (GPa), even for negligible lateral friction. In a static Pt–monolayer–n-type Si junction the flexovoltage carries the same sign as the tribovoltage, and can reach such magnitude to overwrite external voltages as high as 2 V. The immediate implication is that the flexovoltage is likely to have i) a strong contribution to the zero-bias output of a n-Si Schottky TENG, ii) a negative effect on the output of a p-Si TENG, and iii) its detection can be straightforward, as we discovered that flexoelectricity manifests as an “inverted diode”: a n-type Si–platinum diode with negligible current even when the n-type material is negatively biased as long as the “static” diode remains under a large normal pressure

    Silicon - single molecule - silicon circuits

    Get PDF
    In 2020, silicon - molecule - silicon junctions were fabricated and shown to be on average one third as conductive as traditional junctions made using gold electrodes, but in some instances to be even more conductive, and significantly 3 times more extendable and 5 times more mechanically stable. Herein, calculations are performed of single-molecule junction structure and conductivity pertaining to blinking and scanning-tunnelling-microscopy (STM) break junction (STMBJ) experiments performed using chemisorbed 1,6-hexanedithiol linkers. Some strikingly different characteristics are found compared to analogous junctions formed using the metals which, to date, have dominated the field of molecular electronics. In the STMBJ experiment, following retraction of the STM tip after collision with the substrate, unterminated silicon surface dangling bonds are predicted to remain after reaction of the fresh tips with the dithiol solute. These dangling bonds occupy the silicon band gap and are predicted to facilitate extraordinary single-molecule conductivity. Enhanced junction extendibility is attributed to junction flexibility and the translation of adsorbed molecules between silicon dangling bonds. The calculations investigate a range of junction atomic-structural models using density-functional-theory (DFT) calculations of structure, often explored at 300 K using molecular dynamics (MD) simulations. These are aided by DFT calculations of barriers for passivation reactions of the dangling bonds. Thermally averaged conductivities are then evaluated using non-equilibrium Green's function (NEGF) methods. Countless applications through electronics, nanotechnology, photonics, and sensing are envisaged for this technology

    Re-annotation of the woodland strawberry (Fragaria vesca) genome

    Get PDF
    Fragaria vesca is a low-growing, small-fruited diploid strawberry species commonly called woodland strawberry. It is native to temperate regions of Eurasia and North America and while it produces edible fruits, it is most highly useful as an experimental perennial plant system that can serve as a model for the agriculturally important Rosaceae family. A draft of the F. vesca genome sequence was published in 2011 [Nat Genet 43:223,2011]. The first generation annotation (version 1.1) were developed using GeneMark-ES+[Nuc Acids Res 33:6494,2005]which is a self-training gene prediction tool that relies primarily on the combination of ab initio predictions with mapping high confidence ESTs in addition to mapping gene deserts from transposable elements. Based on over 25 different tissue transcriptomes, we have revised the F. vesca genome annotation, thereby providing several improvements over version 1.1. The new annotation, which was achieved using Maker, describes many more predicted protein coding genes compared to the GeneMark generated annotation that is currently hosted at the Genome Database for Rosaceae (http://www.rosaceae.org/). Our new annotation also results in an increase in the overall total coding length, and the number of coding regions found. The total number of gene predictions that do not overlap with the previous annotations is 2286, most of which were found to be homologous to other plant genes. We have experimentally verified one of the new gene model predictions to validate our results. Using the RNA-Seq transcriptome sequences from 25 diverse tissue types, the re-annotation pipeline improved existing annotations by increasing the annotation accuracy based on extensive transcriptome data. It uncovered new genes, added exons to current genes, and extended or merged exons. This complete genome re-annotation will significantly benefit functional genomic studies of the strawberry and other members of the Rosaceae.https://doi.org/10.1186/s12864-015-1221-

    Single-molecule electrical contacts on silicon electrodes under ambient conditions

    Get PDF
    The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule electronics to shift towards the semiconducting platform of the current microelectronics industry. Here, we report silicon-based single-molecule contacts that are mechanically and electrically stable under ambient conditions. The single-molecule contacts are prepared on silicon electrodes using the scanning tunnelling microscopy break-junction approach using a top metallic probe. The molecular wires show remarkable current–voltage reproducibility, as compared to an open silicon/nano-gap/metal junction, with current rectification ratios exceeding 4,000 when a low-doped silicon is used. The extension of the single-molecule junction approach to a silicon substrate contributes to the next level of miniaturization of electronic components and it is anticipated it will pave the way to a new class of robust single-molecule circuits

    Controlling piezoresistance in single molecules through the isomerisation of bullvalenes

    Get PDF
    Nanoscale electro-mechanical systems (NEMS) displaying piezoresistance offer unique measurement opportunities at the sub-cellular level, in detectors and sensors, and in emerging generations of integrated electronic devices. Here, we show a single-molecule NEMS piezoresistor that operates utilising constitutional and conformational isomerisation of individual diaryl-bullvalene molecules and can be switched at 850 Hz. Observations are made using scanning tunnelling microscopy break junction (STMBJ) techniques to characterise piezoresistance, combined with blinking (current-time) experiments that follow single-molecule reactions in real time. A kinetic Monte Carlo methodology (KMC) is developed to simulate isomerisation on the experimental timescale, parameterised using density-functional theory (DFT) combined with non-equilibrium Green’s function (NEGF) calculations. Results indicate that piezoresistance is controlled by both constitutional and conformational isomerisation, occurring at rates that are either fast (equilibrium) or slow (non-equilibrium) compared to the experimental timescale. Two different types of STMBJ traces are observed, one typical of traditional experiments that are interpreted in terms of intramolecular isomerisation occurring on stable tipped-shaped metal-contact junctions, and another attributed to arise from junction‒interface restructuring induced by bullvalene isomerisation

    Effect of Electric Fields on Silicon-Based Monolayers

    Get PDF
    Electric fields can induce bond breaking and bond forming, catalyze chemical reactions on surfaces, and change the structure of self-assembled monolayers on electrode surfaces. Here, we study the effect of electric fields supplied either by an electrochemical potential or by conducting atomic force microscopy (C-AFM) on Si-based monolayers. We report that typical monolayers on silicon undergo partial desorption followed by the oxidation of the underneath silicon at +1.5 V vs Ag/AgCl. The monolayer loses 28% of its surface coverage and 55% of its electron transfer rate constant (ket) when +1.5 V electrochemical potential is applied on the Si surface for 10 min. Similarly, a bias voltage of +5 V applied by C-AFM induces complete desorption of the monolayer at specific sites accompanied by an average oxide growth of 2.6 nm when the duration of the bias applied is 8 min. Current-voltage plots progressively change from rectifying, typical of metal-semiconductor junctions, to insulating as the oxide grows. These results define the stability of Si-based organic monolayers toward electric fields and have implication in the design of silicon-based monolayers, molecular electronics devices, and on the interpretation of charge-transfer kinetics across them

    Nanoscale Silicon Oxide Reduces Electron Transfer Kinetics of Surface-Bound Ferrocene Monolayers on Silicon

    Get PDF
    Functionalizing Si with self-assembled monolayers (SAMs) paves the way for integrating the semiconducting properties of Si with the diverse properties of organic molecules. Highly packed SAMs such as those formed from alkyl chains protect Si from reoxidation in an ambient environment. Such monolayers have been largely considered oxide-free, but the effect of nanoscale reoxidation on the electrochemical kinetics of Si-based SAMs remains unknown. Here, we systematically study the effect of the oxide growth on the electrochemical charge-transfer kinetics of ferrocene-terminated SAMs on Si by exposing the surfaces to ambient conditions for controlled periods of time. X-ray photoelectron spectroscopy and atomic force microscopy revealed a gradual growth of silicon oxide (SiOx) on the surfaces over time. The oxide growth is accompanied by a decrease in the ferrocene surface coverage and a concomitant decrease in the electron transfer rate constant (ket) measured by electrochemical impedance spectroscopy. The drop in ket is attributed to a greater spacing between the ferrocene moieties induced by the surface oxide, which in turn blocks lateral electron transfer between neighboring ferrocene moieties. These findings explain the highly scattered literature data on electron transfer kinetics for monolayers on Si and have implications for the proper design of Si-based molecular electronic devices

    Ultra-small fatty acid-stabilized magnetite nanocolloids synthesized by in situ hydrolytic precipitation

    Get PDF
    © 2015 Kheireddine El-Boubbou et al. Simple, fast, large-scale, and cost-effective preparation of uniform controlled magnetic nanoparticles remains a major hurdle on the way towards magnetically targeted applications at realistic technical conditions. Herein, we present a unique one-pot approach that relies on simple basic hydrolytic in situ coprecipitation of inexpensive metal salts (Fe<sup>2+</sup> and Fe<sup>3+</sup>) compartmentalized by stabilizing fatty acids and aided by the presence of alkylamines. The synthesis was performed at relatively low temperatures (80°C) without the use of high-boiling point solvents and elevated temperatures. This method allowed for the production of ultra-small, colloidal, and hydrophobically stabilized magnetite metal oxide nanoparticles readily dispersed in organic solvents. The results reveal that the obtained magnetite nanoparticles exhibit narrow size distributions, good monodispersities, high saturation magnetizations, and excellent colloidal stabilities. When the [fatty acid]: [Fe] ratio was varied, control over nanoparticle diameters within the range of 2-10 nm was achieved. The amount of fatty acid and alkylamine used during the reaction proved critical in governing morphology, dispersity, uniformity, and colloidal stability. Upon exchange with water-soluble polymers, the ultra-small sized particles become biologically relevant, with great promise for theranostic applications as imaging and magnetically targeted delivery vehicles

    Spontaneous S–Si bonding of alkanethiols to Si(111)–H: towards Si–molecule–Si circuits

    Get PDF
    We report the synthesis of covalently linked self-assembled monolayers (SAMs) on silicon surfaces, using mild conditions, in a way that is compatible with silicon-electronics fabrication technologies. In molecular electronics, SAMs of functional molecules tethered to gold via sulfur linkages dominate, but these devices are not robust in design and not amenable to scalable manufacture. Whereas covalent bonding to silicon has long been recognized as an attractive alternative, only formation processes involving high temperature and/or pressure, strong chemicals, or irradiation are known. To make molecular devices on silicon under mild conditions with properties reminiscent of Au–S ones, we exploit the susceptibility of thiols to oxidation by dissolved O2, initiating free-radical polymerization mechanisms without causing oxidative damage to the surface. Without thiols present, dissolved O2 would normally oxidize the silicon and hence reaction conditions such as these have been strenuously avoided in the past. The surface coverage on Si(111)–H is measured to be very high, 75% of a full monolayer, with density-functional theory calculations used to profile spontaneous reaction mechanisms. The impact of the Si–S chemistry in single-molecule electronics is demonstrated using STM-junction approaches by forming Si–hexanedithiol–Si junctions. Si–S contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 2.7 s, which is five folds higher than that reported for conventional molecular junctions formed between gold electrodes. The enhanced “ON” lifetime of this single-molecule circuit enables previously inaccessible electrical measurements on single molecules

    Electrostatic Catalysis of a Click Reaction in a Microfluidic Cell

    Full text link
    Electric fields have been highlighted as a smart reagent in nature's enzymatic machinery, as they can directly trigger or accelerate redox and/or non-redox chemical processes with stereo- and regio-specificity. In natural catalysis, controlled mass transport of chemical species in confined spaces is also key in facilitating the transport of reactants into the active reaction site. Despite the opportunities the above offers in developing strategies for a new, clean electrostatic catalysis exploiting oriented electric fields, research in this area has been mostly limited to theoretical and experimental studies at the level of single molecules or small molecular ensembles, where both the control over mass transport and scalability cannot be tested. Here, we quantify the electrostatic catalysis of a prototypical Huisgen cycloaddition in a large-area electrode surface and directly compare its performance to the traditional Cu(I)-catalyzed method of the same reaction. Mass diffusion control is achieved in a custom-built microfluidic cell, which enhances reagent transport towards the electrified reactive interface while avoiding both turbulent flow conditions and poor control of the convective mass transport. This unprecedented electrostatic continuous-flow microfluidic reactor is an example of an electric-field driven platform where clean large-scale electrostatic catalytic processes can be efficiently implemented and regulated.Comment: Main Manuscript part includes 12 pages, 4 figures, 1 table and Supporting Information part includes 20 pages, 8 figures, 1 tabl
    • …
    corecore