43 research outputs found

    Stable, Environmental Specific and Novel QTL Identification as Well as Genetic Dissection of Fatty Acid Metabolism in Brassica napus

    Get PDF
    Fatty acid (FA) composition is the typical quantitative trait in oil seed crops, of which study is not only closely related to oil content, but is also more critical for the quality improvement of seed oil. The double haploid (DH) population named KN with a high density SNP linkage map was applied for quantitative trait loci (QTL) analysis of FA composition in this study. A total of 406 identified QTL were detected for eight FA components with an average confidence interval (CI) of 2.92 cM, the explained phenotypic variation (PV) value ranged from 1.49 to 45.05%. Totally, 204 consensus and 91 unique QTL were further obtained via meta-analysis method for the purpose of detecting multiple environment expressed and pleiotropic QTL, respectively. Of which, 74 stable expressed and 22 environmental specific QTL were also revealed, respectively. In order to make clear the genetic mechanism of FA metabolism at individual QTL level, conditional QTL analysis was also conducted and more than two thousand conditional QTL which could not be detected under the unconditional mapping were detected, which indicated the complex interrelationship of the QTL controlling FA content in rapeseed. Through comparative genomic analysis and homologous gene annotation, 61 candidates related to acyl lipid metabolism were identified underlying the CI of FA QTL. To further visualize the genetic mechanism of FA metabolism, an intuitive and meticulous network about acyl lipid metabolism was constructed and some closely related candidates were positioned. This study provided a more accurate localization for stable and pleiotropic QTL, and a deeper dissection of the molecular regulatory mechanism of FA metabolism in rapeseed

    Rapeseed (Brassica napus): Processing, Utilization, and Genetic Improvement

    No full text
    Brassica napus L. is a vegetable oil crop, commonly known as rapeseed (or canola). It is widely used as a source of oil and protein for food and industrial applications, but also as a remedy, and in a field of attraction or as an ornament due to its diverse flower colors. Every part of rapeseed is useful, even the waste, which could be used to feed animals, or recycled. In this review, the use of rapeseed in these applications is presented, starting with the preparation of oil and protein from the seeds, before their release in the market, to the utilization of natural unprocessed rapeseed. Progress in rapeseed exploitation for food, remedy, energy source, and industrial applications are analyzed to show variability in diverse findings, to provide insights and progressive descriptions of rapeseed usage to other scholars. Moreover, advancements in breeding for rapeseed improvement were described. In the future, strategies could be developed or improved to avoid or decrease crop losses, but also to increase interest in propagating the valuable traits of rapeseed

    Acyl-coA binding domain alignment in <i>Bn</i>ACBPs.

    No full text
    <p>Alignment was generated using Vector NTI. Identical residues in all ACBPs are highlighted in yellow, identical residues in most of ACBPs are in blue. YKQA and KWDAW motifs correspond to the acyl-coA-binding site. The coenzyme-A head group-binding site are underlined. Capital letters indicate residues conserved in all ACBP of all species.</p

    3D alignment between <i>Bn</i>ACBPs and their structure neighbors.

    No full text
    <p>The models were generated from Phyre2 with 100% of confidence. A part of each ACBP could be modeled: small ACBP (95%), ankyrin repeats ACBP (51%), large ACBP (23%), kelch motif ACBP(59%). Structure neighbors and 3D alignments were generated from VAST. Entire chains including only the aligned residues are shown. Red labels indicate amino acid residues that are identical in <i>Bn</i>ACBPs and their neighbors.</p

    Computational Prediction of acyl-coA Binding Proteins Structure in <i>Brassica napus</i>

    No full text
    <div><p>Acyl-coA binding proteins could transport acyl-coA esters from plastid to endoplasmic reticulum, prior to fatty acid biosynthesis, leading to the formation of triacylglycerol. The structure and the subcellular localization of acyl-coA binding proteins (ACBP) in <i>Brassica napus</i> were computationally predicted in this study. Earlier, the structure analysis of ACBPs was limited to the small ACBPs, the current study focused on all four classes of ACBPs. Physicochemical parameters including the size and the length, the intron-exon structure, the isoelectric point, the hydrophobicity, and the amino acid composition were studied. Furthermore, identification of conserved residues and conserved domains were carried out. Secondary structure and tertiary structure of ACBPs were also studied. Finally, subcellular localization of ACBPs was predicted. The findings indicated that the physicochemical parameters and subcellular localizations of ACBPs in <i>Brassica napus</i> were identical to <i>Arabidopsis thaliana</i>. Conserved domain analysis indicated that ACBPs contain two or three kelch domains that belong to different families. Identical residues in acyl-coA binding domains corresponded to eight amino acid residues in all ACBPs of <i>B</i>. <i>napus</i>. However, conserved residues of common ACBPs in all species of animal, plant, bacteria and fungi were only inclusive in small ACBPs. Alpha-helixes were displayed and conserved in all the acyl-coA binding domains, representing almost the half of the protein structure. The findings confirm high similarities in ACBPs between <i>A</i>. <i>thaliana</i> and <i>B</i>. <i>napus</i>, they might share the same functions but loss or gain might be possible.</p></div

    In Silico Analysis of Fatty Acid Desaturases Structures in Camelina sativa, and Functional Evaluation of Csafad7 and Csafad8 on Seed Oil Formation and Seed Morphology

    No full text
    Fatty acid desaturases add a second bond into a single bond of carbon atoms in fatty acid chains, resulting in an unsaturated bond between the two carbons. They are classified into soluble and membrane-bound desaturases, according to their structure, subcellular location, and function. The orthologous genes in Camelina sativa were identified and analyzed, and a total of 62 desaturase genes were identified. It was revealed that they had the common fatty acid desaturase domain, which has evolved separately, and the proteins of the same family also originated from the same ancestry. A mix of conserved, gained, or lost intron structure was obvious. Besides, conserved histidine motifs were found in each family, and transmembrane domains were exclusively revealed in the membrane-bound desaturases. The expression profile analysis of C. sativa desaturases revealed an increase in young leaves, seeds, and flowers. C. sativa ω3-fatty acid desaturases CsaFAD7 and CsaDAF8 were cloned and the subcellular localization analysis showed their location in the chloroplast. They were transferred into Arabidopsis thaliana to obtain transgenic lines. It was revealed that the ω3-fatty acid desaturase could increase the C18:3 level at the expense of C18:2, but decreases in oil content and seed weight, and wrinkled phenotypes were observed in transgenic CsaFAD7 lines, while no significant change was observed in transgenic CsaFAD8 lines in comparison to the wild-type. These findings gave insights into the characteristics of desaturase genes, which could provide an excellent basis for further investigation for C. sativa improvement, and overexpression of ω3-fatty acid desaturases in seeds could be useful in genetic engineering strategies, which are aimed at modifying the fatty acid composition of seed oil
    corecore