25 research outputs found

    Functional characterization of the sciarid BhC4-1 core promoter in transgenic Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Core promoters are <it>cis</it>-regulatory modules to which bind the basal transcriptional machinery and which participate in the regulation of transcription initiation. Although core promoters have not been extensively investigated through functional assays in a chromosomal context, the available data suggested that the response of a given core promoter might vary depending on the promoter context. Previous studies suggest that a (-57/+40) fragment constitutes the core promoter of the <it>BhC4-1 </it>gene which is located in DNA puff C4 of the sciarid fly <it>Bradysia hygida</it>. Here we tested this (-57/+40) fragment in distinct regulatory contexts in order to verify if promoter context affects its core promoter activity.</p> <p>Results</p> <p>Consistent with the activity of a core promoter, we showed that in the absence of upstream regulatory sequences the (-57/+40) fragment drives low levels of reporter gene mRNA expression throughout development in transgenic <it>Drosophila</it>. By assaying the (-57/+40) fragment in two distinct regulatory contexts, either downstream of the previously characterized <it>Fbp1 </it>enhancer or downstream of the UAS element, we showed that the <it>BhC4-1 </it>core promoter drives regulated transcription in both the germline and in various tissues throughout development. Furthermore, the use of the <it>BhC4-1 </it>core promoter in a UAS construct significantly reduced salivary gland ectopic expression in third instar larvae, which was previously described to occur in the context of the GAL4/UAS system.</p> <p>Conclusions</p> <p>Our results from functional analysis in transgenic <it>Drosophila </it>show that the <it>BhC4-1 </it>core promoter drives gene expression regardless of the promoter context that was assayed. New insights into the functioning of the GAL4/UAS system in <it>Drosophila </it>were obtained, indicating that the presence of the SV40 sequence in the 3' UTR of a UAS construct does not preclude expression in the germline. Furthermore, our analysis indicated that ectopic salivary gland expression in the GAL4/UAS system does not depend only on sequences present in the GAL4 construct, but can also be affected by the core promoter sequences in the UAS construct. In this context, we propose that the sciarid <it>BhC4-1 </it>core promoter constitutes a valuable core promoter which can be employed in functional assays in insects.</p

    Use of the checkerboard DNA-DNA hybridization technique for bacteria detection in Aedes aegypti (Diptera:Culicidae) (L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteria associated with insects can have a substantial impact on the biology and life cycle of their host. The checkerboard DNA-DNA hybridization technique is a semi-quantitative technique that has been previously employed in odontology to detect and quantify a variety of bacterial species in dental samples. Here we tested the applicability of the checkerboard DNA-DNA hybridization technique to detect the presence of <it>Aedes aegypti</it>-associated bacterial species in larvae, pupae and adults of <it>A. aegypti</it>.</p> <p>Findings</p> <p>Using the checkerboard DNA-DNA hybridization technique we could detect and estimate the number of four bacterial species in total DNA samples extracted from <it>A. aegypti </it>single whole individuals and midguts. <it>A. aegypti </it>associated bacterial species were also detected in the midgut of four other insect species, <it>Lutzomyia longipalpis, Drosophila melanogaster</it>, <it>Bradysia hygida </it>and <it>Apis mellifera</it>.</p> <p>Conclusions</p> <p>Our results demonstrate that the checkerboard DNA-DNA hybridization technique can be employed to study the microbiota composition of mosquitoes. The method has the sensitivity to detect bacteria in single individuals, as well as in a single organ, and therefore can be employed to evaluate the differences in bacterial counts amongst individuals in a given mosquito population. We suggest that the checkerboard DNA-DNA hybridization technique is a straightforward technique that can be widely used for the characterization of the microbiota in mosquito populations.</p

    The use of Open Reading frame ESTs (ORESTES) for analysis of the honey bee transcriptome

    Get PDF
    BACKGROUND: The ongoing efforts to sequence the honey bee genome require additional initiatives to define its transcriptome. Towards this end, we employed the Open Reading frame ESTs (ORESTES) strategy to generate profiles for the life cycle of Apis mellifera workers. RESULTS: Of the 5,021 ORESTES, 35.2% matched with previously deposited Apis ESTs. The analysis of the remaining sequences defined a set of putative orthologs whose majority had their best-match hits with Anopheles and Drosophila genes. CAP3 assembly of the Apis ORESTES with the already existing 15,500 Apis ESTs generated 3,408 contigs. BLASTX comparison of these contigs with protein sets of organisms representing distinct phylogenetic clades revealed a total of 1,629 contigs that Apis mellifera shares with different taxa. Most (41%) represent genes that are in common to all taxa, another 21% are shared between metazoans (Bilateria), and 16% are shared only within the Insecta clade. A set of 23 putative genes presented a best match with human genes, many of which encode factors related to cell signaling/signal transduction. 1,779 contigs (52%) did not match any known sequence. Applying a correction factor deduced from a parallel analysis performed with Drosophila melanogaster ORESTES, we estimate that approximately half of these no-match ESTs contigs (22%) should represent Apis-specific genes. CONCLUSIONS: The versatile and cost-efficient ORESTES approach produced minilibraries for honey bee life cycle stages. Such information on central gene regions contributes to genome annotation and also lends itself to cross-transcriptome comparisons to reveal evolutionary trends in insect genomes

    Identification of unannotated exons of low abundance transcripts in Drosophila melanogaster and cloning of a new serine protease gene upregulated upon injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sequencing of the <it>D.melanogaster </it>genome revealed an unexpected small number of genes (~ 14,000) indicating that mechanisms acting on generation of transcript diversity must have played a major role in the evolution of complex metazoans. Among the most extensively used mechanisms that accounts for this diversity is alternative splicing. It is estimated that over 40% of <it>Drosophila </it>protein-coding genes contain one or more alternative exons. A recent transcription map of the <it>Drosophila </it>embryogenesis indicates that 30% of the transcribed regions are unannotated, and that 1/3 of this is estimated as missed or alternative exons of previously characterized protein-coding genes. Therefore, the identification of the variety of expressed transcripts depends on experimental data for its final validation and is continuously being performed using different approaches. We applied the Open Reading Frame Expressed Sequence Tags (ORESTES) methodology, which is capable of generating cDNA data from the central portion of rare transcripts, in order to investigate the presence of hitherto unnanotated regions of <it>Drosophila </it>transcriptome.</p> <p>Results</p> <p>Bioinformatic analysis of 1,303 <it>Drosophila </it>ORESTES clusters identified 68 sequences derived from unannotated regions in the current <it>Drosophila </it>genome version (4.3). Of these, a set of 38 was analysed by polyA<sup>+ </sup>northern blot hybridization, validating 17 (50%) new exons of low abundance transcripts. For one of these ESTs, we obtained the cDNA encompassing the complete coding sequence of a new serine protease, named SP212. The <it>SP212 </it>gene is part of a serine protease gene cluster located in the chromosome region 88A12-B1. This cluster includes the predicted genes CG9631, CG9649 and CG31326, which were previously identified as up-regulated after immune challenges in genomic-scale microarray analysis. In agreement with the proposal that this <it>locus </it>is co-regulated in response to microorganisms infection, we show here that SP212 is also up-regulated upon injury.</p> <p>Conclusion</p> <p>Using the ORESTES methodology we identified 17 novel exons from low abundance <it>Drosophila </it>transcripts, and through a PCR approach the complete CDS of one of these transcripts was defined. Our results show that the computational identification and manual inspection are not sufficient to annotate a genome in the absence of experimentally derived data.</p

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF

    Intrinsically bent DNA sites in the Drosophila melanogaster third chromosome amplified domain

    No full text
    Bent DNA sites promote the curvature of DNA in both eukaryotic and prokaryotic chromosomes. Here, we investigate the localization and structure of intrinsically bent DNA sites in the extensively characterized Drosophila melanogaster third chromosome DAFC-66D segment (Drosophila amplicon in the follicle cells). This region contains the amplification control element ACE3, which is a replication enhancer that acts in cis to activate the major replication origin ori-beta. Through both electrophoretic and in silico analysis, we have identified three major bent DNA sites in DAFC-66D. The bent DNA site (b1) is localized in the ACE3 element, whereas the other two bent DNA sites (b2 and b3) are localized in the ori-beta region. Four additional bent DNA sites were identified in the intron of the S18 gene and near the TATA box of the S15, S19, and S16 genes. The identification of DNA bent sites in genomic regions previously characterized as functionally relevant for DNA amplification further supports a function for DNA bent sites in DNA replication in eukaryotes.CNPqAcademy of Sciences for the Developing World-TWASUniversidade Estadual de Maringa facilites (COMCAP laboratories

    Functional and bioinformatics analyses reveal conservation of Cis-regulatory elements between sciaridae and Drosophilidae

    No full text
    The sciarid DNA puff C4 BhC4-1 gene is amplified and transcribed in salivary glands at the end of the larval stage. In transgenic Drosophila, the BhC4-1 promoter drives transcription in prepupal salivary glands and in the ring gland of late embryos. A bioinformatics analysis has identified 162 sequences similar to distinct regions of the BhC4-1 proximal promoter, which are predominantly located either in 5` or 3` regions or introns in the Drosophila melanogaster genome. A significant number of the identified sequences are found in the regulatory regions of Drosophila genes that are expressed in the salivary gland. Functional assays in Drosophila reveal that the BhC4-1 proximal promoter contains both a 129 bp (-186/-58) salivary gland enhancer and a 67 bp (-253/-187) ring gland enhancer that drive tissue specific patterns of developmentally regulated gene expression, irrespective of their orientation

    <i>Pseudolycoriella hygida</i> (Sauaia and Alves)—An Overview of a Model Organism in Genetics, with New Aspects in Morphology and Systematics

    No full text
    Pseudolycoriella hygida (Sauaia & Alves, 1968) is a sciarid that has been continuously cultured in the laboratory for nearly 60 years. Studies on this species have contributed to the understanding of DNA puffs, which are characteristic of Sciaridae, and to the knowledge of more general aspects of insect biology, including cell death, nucleolar organization, and the role of the hormone ecdysone during molting. The genome of Psl. hygida has now been sequenced, and it is the third publicly available sciarid genome. The aim of this work is to expand the current knowledge on Psl. hygida. The morphology of the adults is revisited. The morphology of larvae and pupae is described, together with the behavior of immature stages under laboratory conditions. Cytogenetic maps of the salivary gland polytene chromosomes are presented, together with a comparative analysis of the mitotic chromosomes of six different sciarid species. Pseudolycoriella hygida was originally described as a species of Bradysia and recently moved to Pseudolycoriella. We examine here the systematic position of Psl. hygida in the latter genus. Our results extend the characterization of an unconventional model organism and constitute an important resource for those working on the cytogenetics, ecology, taxonomy, and phylogenetic systematics of sciarids
    corecore