10 research outputs found
Assessment of nutritional and mineral composition of different parts of Schismatoglottis bauensis
The study was carried out to assess nutritional and mineral composition of dried whole plant, leaf, stem, rhizome and root of Schismatoglottis bauensis. Proximate analysis was carried out by measuring total protein, fats, carbohydrate, ash and moisture contents following official methods of Association of Official Analytical Chemists. Macro- (Ca, Na, K) and micronutrients (Fe, Cu, Zn) were analyzed using atomic absorption spectrometry. Results revealed that dried whole plant showed highest crude fats and moisture content, whilst dried leaf exhibited the highest percentage of crude protein, and dried rhizome had the highest carbohydrate content. The calorific values for whole plant, leaf, stem, rhizome and root were 288.52, 309.19, 267.10, 303.71, and 295.37 Kcal/ 100 g, respectively. Major minerals present in all the tested samples were potassium and calcium ranging from 2714 to 7213 mg/100 g and 216 to 1517 mg/100 g, respectively. Overall, the findings indicate this plant to be a good source of nutrient and minerals, which could be exploited as a valuable material for functional foods or nutraceuticals
Are bioactive-rich fractions functionally richer?
Plant bioresources are relied upon as natural, inexpensive, and sustainable remedies for the management of several chronic diseases worldwide. Plants have historically been consumed for medicinal purposes based on traditional belief, but this trend is currently changing. The growing interest in the medicinal properties of plant bioresources stems from concerns of side effects and other adverse effects caused by synthetic drugs. This interest has yielded a better understanding of the roles of plant bioactive compounds in health promotion and disease prevention, including the underlying mechanisms involved in such functional effects. The desire to maximize the potential of phytochemicals has led to the development of "rich fractions," in which extracts contain bioactive compounds in addition to elevated levels of the primary compound. Although a rich fraction effectively increases the bioactivity of the extract, the standardization and quality assurance process can be challenging. However, the supercritical fluid extraction (SFE) system is a promising green technology in this regard. Future clinical and pharmacological studies are needed to fully elucidate the implications of these preparations in the management of human diseases, thereby fostering a move toward evidence-based medicine
Are bioactive-rich fractions functionally richer?
Plant bioresources are relied upon as natural, inexpensive, and sustainable remedies for the management of several chronic diseases worldwide. Plants have historically been consumed for medicinal purposes based on traditional belief, but this trend is currently changing. The growing interest in the medicinal properties of plant bioresources stems from concerns of side effects and other adverse effects caused by synthetic drugs. This interest has yielded a better understanding of the roles of plant bioactive compounds in health promotion and disease prevention, including the underlying mechanisms involved in such functional effects. The desire to maximize the potential of phytochemicals has led to the development of “rich fractions,” in which extracts contain bioactive compounds in addition to elevated levels of the primary compound. Although a rich fraction effectively increases the bioactivity of the extract, the standardization and quality assurance process can be challenging. However, the supercritical fluid extraction (SFE) system is a promising green technology in this regard. Future clinical and pharmacological studies are needed to fully elucidate the implications of these preparations in the management of human diseases, thereby fostering a move toward evidence-based medicine
Phenolic rich extract from Clinicanthus nutans attenuates hyperlipidemia-associated oxidative stress in rats
Clinacanthus nutans is used as traditional medicine in Asia but there are limited scientific studies to support its use. In this study, the stem and leaf of C. nutans were extracted using solvents of differing polarities, and their antioxidant capacities were determined using multiple antioxidant assays. The water and aqueous methanolic leaf extracts were further fractionated and their antioxidant capacities and phenolic compositions were tested. Furthermore, the efficacies of the water and aqueous methanolic leaf extracts were tested against hyperlipidemia-induced oxidative stress in rats. Serum and hepatic antioxidant and oxidative stress markers were tested after feeding the rats with high fat diet together with the extracts or simvastatin for 7 weeks. The results indicated that both leaf extracts attenuated oxidative stress through increasing serum antioxidant enzymes activity and upregulating the expression of hepatic antioxidant genes. Multiple phenolic compounds were detected in the extracts and fractions of C. nutans, although protocatechuic acid was one of the most abundant and may have contributed significantly towards the bioactivities of the extracts. However, synergistic effects of different phenolics may have contributed to the overall bioactivities. C. nutans can be a good source of functional ingredients for the management of oxidative stress-related diseases
Composition for preventing cardiovascular diseases
The present invention relates to a composition comprising extracts of a plant in the family Acanthaceae. More particularly, the composition comprises Clinacanthus nutans, which is a species of the family Acanthaceae. The composition is capable of lowering cholesterol and oxidative stress as well as increasing hydroxyl radical scavenging activity. According to the present invention, the composition comprising the Clinacanthus nutans extracts is used for manufacturing a medicament, as a food product or a beverage product in order to prevent cardiovascular disease
Effects of phenolic-rich extracts of Clinacanthus nutans on high fat and high cholesterol diet-induced insulin resistance
Background: Clinacanthus nutans is used traditionally in many parts of Asia to improve well-being, but there are limited studies on its efficacy. We explored the potential use of C. nutans for prevention of high fat and high cholesterol diet-(HFHC-) induced insulin resistance in rats. Methods: The leaf of C. nutans was extracted using water (AL extract) and methanol (AML extract), and the extracts were fed to rats alongside the HFHC diet for 7 weeks, and compared with simvastatin. Oral glucose tolerance test, and serum insulin, retinol binding protein 4 (RBP4), adiponectin and leptin were measured. Homeostatic model assessment of insulin resistance (HOMA-IR) was computed, while transcriptional regulation of hepatic insulin signaling genes was also assessed. Results: Glycemic response was higher in the HFHC group compared with the AL and AML groups, which also had lower serum RBP4, fasting glucose, insulin and HOMA-IR. Serum adiponectin levels were higher, while leptin levels were lower in the AML and AL groups compared to the HFHC group. There was upregulation of the Insulin receptor substrate, phosphotidyl inositol-3-phosphate, adiponectin receptor and leptin recetor genes, in comparison with the HFHC group. Conclusions: Overall, the results showed that the HFHC diet worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. C.nutans, on the other hand, attenuated the metabolic effects and transcriptional changes induced by the HFHC diet. The results suggested that C.nutans may be a good source of functional ingredient for the prevention of insulin resistance
Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent
Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders
Edible Bird’s Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats
Edible bird’s nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance