109 research outputs found
Surface Plasmon Resonance kinetic analysis of the interaction between G-quadruplex nucleic acids and an anti-G-quadruplex monoclonal antibody
Background
G-quadruplexes (G4s) are nucleic acids secondary structures formed in guanine-rich sequences. Anti-G4 antibodies represent a tool for the direct investigation of G4s in cells. Surface Plasmon Resonance (SPR) is a highly sensitive technology, suitable for assessing the affinity between biomolecules. We here aimed at improving the orientation of an anti-G4 antibody on the SPR sensor chip to optimize detection of binding antigens.
Methods
SPR was employed to characterize the anti-G4 antibody interaction with G4 and non-G4 oligonucleotides. Dextran-functionalized sensor chips were used both in covalent coupling and capturing procedures.
Results
The use of two leading molecule for orienting the antibody of interest allowed to improve its activity from completely non-functional to 65% active. The specificity of the anti-G4 antobody for G4 structures could thus be assessed with high sensitivity and reliability.
Conclusions
Optimization of the immobilization protocol for SPR biosensing, allowed us to determine the anti-G4 antibody affinity and specificity for G4 antigens with higher sensitivity with respect to other in vitro assays such as ELISA. Anti-G4 antibody specificity is a fundamental assumption for the future utilization of this kind of antibodies for monitoring G4s directly in cells.
General significance
The heterogeneous orientation of amine-coupling immobilized ligands is a general problem that often leads to partial or complete inactivation of the molecules. Here we describe a new strategy for improving ligand orientation: driving it from two sides. This principle can be virtually applied to every molecule that loses its activity or is poorly immobilized after standard coupling to the SPR chip surface
The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids
open5noBACKGROUND:
G-quadruplexes (G4s) are four-stranded nucleic acid structures that form in G-rich sequences. Nucleolin (NCL) is a cellular protein reported for its functions upon G4 recognition, such as induction of neurodegenerative diseases, tumor and virus mechanisms activation. We here aimed at defining NCL/G4 binding determinants.
METHODS:
Electrophoresis mobility shift assay was used to detect NCL/G4 binding; circular dichroism to assess G4 folding, topology and stability; dimethylsulfate footprinting to detect G bases involved in G4 folding.
RESULTS:
The purified full-length human NCL was initially tested on telomeric G4 target sequences to allow for modulation of loop, conformation, length, G-tract number, stability. G4s in promoter regions with more complex sequences were next employed. We found that NCL binding to G4s heavily relies on G4 loop length, independently of the conformation and oligonucleotide/loop sequence. Low stability G4s are preferred. When alternative G4 conformations are possible, those with longer loops are preferred upon binding to NCL, even if G-tracts need to be spared from G4 folding.
CONCLUSIONS:
Our data provide insight into how G4s and the associated proteins may control the ON/OFF molecular switch to several pathological processes, including neurodegeneration, tumor and virus activation. Understanding these regulatory determinants is the first step towards the development of targeted therapies.
GENERAL SIGNIFICANCE:
The indication that NCL binding preferentially stimulates and induces folding of G4s containing long loops suggests NCL ability to modify the overall structure and steric hindrance of the involved nucleic acid regions. This protein-induced modification of the G4 structure may represent a cellular mechanosensor mechanism to molecular signaling and disease pathogenesis.openLago, Sara; Tosoni, Elena; Nadai, Matteo; Palumbo, Manlio; Richter, Sara NLago, Sara; Tosoni, Elena; Nadai, Matteo; Palumbo, Manlio; Richter, Sar
Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription
Folding of the LTR promoter into dynamic G-quadruplex conformations has been shown to suppress its transcriptional activity in HIV-1. Here we sought to identify the proteins that control the folding of this region of proviral genome by inducing/stabilizing G-quadruplex structures. The implementation of electrophorethic mobility shift assay and pull-down experiments coupled with mass spectrometric analysis revealed that the cellular protein nucleolin is able to specifically recognize G-quadruplex structures present in the LTR promoter. Nucleolin recognized with high affinity and specificity the majority, but not all the possible G-quadruplexes folded by this sequence. In addition, it displayed greater binding preference towards DNA than RNA G-quadruplexes, thus indicating two levels of selectivity based on the sequence and nature of the target. The interaction translated into stabilization of the LTR G-quadruplexes and increased promoter silencing activity; in contrast, disruption of nucleolin binding in cells by both siRNAs and a nucleolin binding aptamer greatly increased LTR promoter activity. These data indicate that nucleolin possesses a specific and regulated activity toward the HIV-1 LTR promoter, which is mediated by G-quadruplexes. These observations provide new essential insights into viral transcription and a possible low mutagenic target for antiretroviral therapy
Synthesis, Binding and Antiviral Properties of Potent Core-Extended Naphthalene Diimides Targeting the HIV-1 Long Terminal Repeat Promoter G-Quadruplexes
We have previously reported that stabilization of the G-quadruplex structures in the HIV-1 long terminal repeat (LTR) promoter suppresses viral transcription. Here we sought to develop new G-quadruplex ligands to be exploited as antiviral compounds by enhancing binding toward the viral G-quadruplex structures. We synthesized naphthalene diimide derivatives with a lateral expansion of the aromatic core. The new compounds were able to bind/stabilize the G-quadruplex to a high extent, and some of them displayed clear-cut selectivity toward the viral G-quadruplexes with respect to the human telomeric G-quadruplexes. This feature translated into low nanomolar anti-HIV-1 activity toward two viral strains and encouraging selectivity indexes. The selectivity depended on specific recognition of LTR loop residues; the mechanism of action was ascribed to inhibition of LTR promoter activity in cells. This is the first example of G-quadruplex ligands that show increased selectivity toward the viral G-quadruplexes and display remarkable antiviral activity
Identification of G-quadruplex DNA/RNA binders: Structure-based virtual screening and biophysical characterization
Background
Recent findings demonstrated that, in mammalian cells, telomere DNA (Tel) is transcribed into telomeric repeat-containing RNA (TERRA), which is involved in fundamental biological processes, thus representing a promising anticancer target. For this reason, the discovery of dual (as well as selective) Tel/TERRA G-quadruplex (G4) binders could represent an innovative strategy to enhance telomerase inhibition.
Methods
Initially, docking simulations of known Tel and TERRA active ligands were performed on the 3D coordinates of bimolecular G4 Tel DNA (Tel2) and TERRA (TERRA2). Structure-based pharmacophore models were generated on the best complexes and employed for the virtual screening of ~ 257,000 natural compounds. The 20 best candidates were submitted to biophysical assays, which included circular dichroism and mass spectrometry at different K+ concentrations.
Results
Three hits were here identified and characterized by biophysical assays. Compound 7 acts as dual Tel2/TERRA2 G4-ligand at physiological KCl concentration, while hits 15 and 17 show preferential thermal stabilization for Tel2 DNA. The different molecular recognition against the two targets was also discussed.
Conclusions
Our successful results pave the way to further lead optimization to achieve both increased selectivity and stabilizing effect against TERRA and Tel DNA G4s.
General significance
The current study combines for the first time molecular modelling and biophysical assays applied to bimolecular DNA and RNA G4s, leading to the identification of innovative ligand chemical scaffolds with a promising anticancer profile. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio
A Fragment-Based Approach for the Development of G-Quadruplex Ligands: Role of the Amidoxime Moiety
G-quadruplex (G4) nucleic acid structures have been reported to be involved in several human pathologies, including cancer, neurodegenerative disorders and infectious diseases; however, G4 targeting compounds still need implementation in terms of drug-like properties and selectivity in order to reach the clinical use. So far, G4 ligands have been mainly identified through high-throughput screening methods or design of molecules with pre-set features. Here, we describe the development of new heterocyclic ligands through a fragment-based drug discovery (FBDD) approach. The ligands were designed against the major G4 present in the long terminal repeat (LTR) promoter region of the human immunodeficiency virus-1 (HIV-1), the stabilization of which has been shown to suppress viral gene expression and replication. Our method is based on the generation of molecular fragment small libraries, screened against the target to further elaborate them into lead compounds. We screened 150 small molecules, composed by structurally and chemically different fragments, selected from commercially available and in-house compounds; synthetic elaboration yielded several G4 ligands and two final G4 binders, both embedding an amidoxime moiety; one of these two compounds showed preferential binding for the HIV-1 LTR G4. This work presents the discovery of a novel potential pharmacophore and highlights the possibility to apply a fragment-based approach to develop G4 ligands with unexpected chemical features
A Catalytic and Selective Scissoring Molecular Tool for Quadruplex Nucleic Acids
A copper complex embedded in the structure of a water-soluble naphthalene diimide has been designed to bind and cleave G-quadruplex DNA. We describe the properties of this ligand, including its catalytic activity in the generation of ROS. FRET melting, CD, NMR, gel sequencing, and mass spectrometry experiments highlight a unique and unexpected selectivity in cleaving G-quadruplex sequences. This selectivity relies both on the binding affinity and structural features of the targeted G-quadruplexes
Stable and Conserved G-Quadruplexes in the Long Terminal Repeat Promoter of Retroviruses
Retroviruses infect almost all vertebrates, from humans to domestic and farm animals, from primates to wild animals, where they cause severe diseases, including immunodeficiencies, neurological disorders, and cancer. Nonhuman retroviruses have also been recently associated with human diseases. To date, no effective treatments are available; therefore, finding retrovirus-specific therapeutic targets is becoming an impelling issue. G-Quadruplexes are four-stranded nucleic acid structures that form in guanine-rich regions. Highly conserved G-quadruplexes located in the long-terminal-repeat (LTR) promoter of HIV-1 were shown to modulate the virus transcription machinery; moreover, the astonishingly high degree of conservation of G-quadruplex sequences in all primate lentiviruses corroborates the idea that these noncanonical nucleic acid structures are crucial elements in the lentiviral biology and thus have been selected for during evolution. In this work, we aimed at investigating the presence and conservation of G-quadruplexes in the Retroviridae family. Genomewide bioinformatics analysis showed that, despite their documented high genetic variability, most retroviruses contain highly conserved putative G-quadruplex-forming sequences in their promoter regions. Biophysical and biomolecular assays proved that these sequences actually fold into G-quadruplexes in physiological concentrations of relevant cations and that they are further stabilized by ligands. These results validate the relevance of G-quadruplexes in retroviruses and endorse the employment of G-quadruplex ligands as innovative antiretroviral drugs. This study indicates new possible pathways in the management of retroviral infections in humans and animal species. Moreover, it may shed light on the mechanism and functions of retrovirus genomes and derived transposable elements in the human genome
Formation of a Unique Cluster of G-Quadruplex Structures in the HIV-1 nef Coding Region: Implications for Antiviral Activity
G-quadruplexes are tetraplex structures of nucleic acids that can form in G-rich sequences. Their presence and functional role have been established in telomeres, oncogene promoters and coding regions of the human chromosome. In particular, they have been proposed to be directly involved in gene regulation at the level of transcription. Because the HIV-1 Nef protein is a fundamental factor for efficient viral replication, infectivity and pathogenesis in vitro and in vivo, we investigated G-quadruplex formation in the HIV-1 nef gene to assess the potential for viral inhibition through G-quadruplex stabilization. A comprehensive computational analysis of the nef coding region of available strains showed the presence of three conserved sequences that were uniquely clustered. Biophysical testing proved that G-quadruplex conformations were efficiently stabilized or induced by G-quadruplex ligands in all three sequences. Upon incubation with a G-quadruplex ligand, Nef expression was reduced in a reporter gene assay and Nef-dependent enhancement of HIV-1 infectivity was significantly repressed in an antiviral assay. These data constitute the first evidence of the possibility to regulate HIV-1 gene expression and infectivity through G-quadruplex targeting and therefore open a new avenue for viral treatment. © 2013 Perrone et al
A dynamic i-motif with a duplex stem-loop in the long terminal repeat promoter of the HIV-1 proviral genome modulates viral transcription
I-motifs are non-canonical nucleic acids structures characterized by intercalated H-bonds between hemi-protonated cytosines. Evidence on the involvement of i-motif structures in the regulation of cellular processes in human cells has been consistently growing in the recent years. However, i-motifs within non-human genomes have never been investigated. Here, we report the characterization of i-motifs within the long terminal repeat (LTR) promoter of the HIV-1 proviral genome. Biophysical and biochemical analysis revealed formation of a predominant i-motif with an unprecedented loop composition. One-dimensional nuclear magnetic resonance investigation demonstrated formation of three G-C H-bonds in the long loop, which likely improve the structure overall stability. Pull-down experiments combined with mass spectrometry and protein crosslinking analysis showed that the LTR i-motif is recognized by the cellular protein hnRNP K, which induced folding at physiological conditions. In addition, hnRNP K silencing resulted in an increased LTR promoter activity, confirming the ability of the protein to stabilize the i-motif-forming sequence, which in turn regulates the LTR-mediated HIV-1 transcription. These findings provide new insights into the complexity of the HIV-1 virus and lay the basis for innovative antiviral drug design, based on the possibility to selectively recognize and target the HIV-1 LTR i-motif
- …