38 research outputs found

    Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi

    Get PDF
    Increasing atmospheric CO2 concentration affects calcification in most planktonic calcifiers. Both reduced or stimulated calcification under high CO2 have been reported in the widespread coccolithophore Emiliania huxleyi. This might affect the response of cells to photosynthetically active radiation ( PAR; 400-700 nm) and ultraviolet radiation (UVR; 280-400 nm) by altering the thickness of the coccolith layer. Here we show that in the absence of UVR, the calcification rates in E. huxleyi decrease under lowered pH levels (pH(NBS) of 7.9 and 7.6; pCO(2) of 81 and 178 Pa or 804 and 1759 ppmv, respectively) leading to thinned coccolith layers, whereas photosynthetic carbon fixation was slightly enhanced at pH 7.9 but remained unaffected at pH 7.6. Exposure to UVR (UV-A 19.5 W m(-2), UV-B 0.67 W m(-2)) in addition to PAR (88.5 W m(-2)), however, results in significant inhibition of both photosynthesis and calcification, and these rates are further inhibited with increasing acidification. The combined effects of UVR and seawater acidification resulted in the inhibition of calcification rates by 96% and 99% and that of photosynthesis by 6% and 15%, at pH 7.9 and 7.6, respectively. This differential inhibition of calcification and photosynthesis leads to significant reduction of the ratio of calcification to photosynthesis. Seawater acidification enhanced the transmission of harmful UVR by about 26% through a reduction of the coccolith layer of 31%. Our data indicate that the effect of a high-CO2 and low-pH ocean on E. huxleyi ( because of reduced calcification associated with changes in the carbonate system) enhances the detrimental effects of UVR on the main pelagic calcifier.National Basic Research Program of China [2009CB421207]; National Natural Science Foundation of China [40676063, 40876058]; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET, Argentina) ; Shantou University and by the European Project on Ocean Acidification (EPOCA), through the European Community's 7th Framework Programme [211384

    Effect of Tamm-Horsfall Protein on Calcium Oxalate Precipitation

    No full text

    A Collodion Diffusion Cell for Use in Dialysis

    No full text

    LAMINARIOCOLAX SP (PHAEOPHYCEAE) ASSOCIATED WITH GALL DEVELOPMENTS IN LESSONIA NIGRESCENS (PHAEOPHYCEAE)1

    No full text
    of gall development on this alga, identified the possible causal agent, and assessed the extent of the phenomenon in two wild stands of the host. Our results showed that galls affecting natural populations of L. nigrescens were associated with the infection by a filamentous brown algal endophyte of the genus Laminariocolax. Assignment to Laminariocolax of the endophytes isolated from cultured gall tissue was based on the (i) high internal transcribed spacer 1 (ITS1) sequence similarity and phylogenetic relationship between the Chilean isolates and several species of the genus Laminariocolax endophytic in other kelps, (ii) reproductive and vegetative features of the endophyte in culture, and (iii) anatomical agreement of fully developed galls of Lessonia with those described for other kelp galls caused by endophytic members of Laminariocolax. Unequivocal identification at the species level of the endophytes infecting Lessonia, however, awaits further studies.Ministry of Science and Technology, National Natural Science Foundation of China [90411018]; Science Foundation of Changshu Institute of Technology [KY11707
    corecore