9 research outputs found

    The mitochondrial peptidase, neurolysin, regulates respiratory chain supercomplex formation and is necessary for AML viability

    Get PDF
    Neurolysin (NLN) is a zinc metallopeptidase whose mitochondrial function is unclear. We found that NLN was overexpressed in almost half of patients with acute myeloid leukemia (AML), and inhibition of NLN was selectively cytotoxic to AML cells and stem cells while sparing normal hematopoietic cells. Mechanistically, NLN interacted with the mitochondrial respiratory chain. Genetic and chemical inhibition of NLN impaired oxidative metabolism and disrupted the formation of respiratory chain supercomplexes (RCS). Furthermore, NLN interacted with the known RCS regulator, LETM1, and inhibition of NLN disrupted LETM1 complex formation. RCS were increased in patients with AML and positively correlated with NLN expression. These findings demonstrate that inhibiting RCS formation selectively targets AML cells and stem cells and highlights the therapeutic potential of pharmacologically targeting NLN in AML

    Bendamustine/romidepsin

    No full text

    Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma

    No full text
    Multiple myeloma (MM) progression is dependent on its interaction with the bone marrow microenvironment and the immune system and is mediated by key surface antigens. Some antigens promote adhesion to the bone marrow matrix and stromal cells, while others are involved in intercellular interactions that result in differentiation of B-cells to plasma cells (PC). These interactions are also involved in malignant transformation of the normal PC to MM PC as well as disease progression. Here, we review selected surface antigens that are commonly used in the flow cytometry analysis of MM for identification of plasma cells (PC) and the discrimination between normal and malignant PC as well as prognostication. These include the markers: CD38, CD138, CD45, CD19, CD117, CD56, CD81, CD27, and CD28. Furthermore, we will discuss the novel marker CD24 and its involvement in MM. The bioactivity of each antigen is reviewed, as well as its expression on normal vs. malignant PC, prognostic implications, and therapeutic utility. Understanding the role of these specific surface antigens, as well as complex co-expressions of combinations of antigens, may allow for a more personalized prognostic monitoring and treatment of MM patients

    The Emerging Role of Venetoclax-Based Treatments in Acute Lymphoblastic Leukemia

    No full text
    Venetoclax, a B-cell lymphoma (BCL-2) inhibitor, in combination with hypomethylating agents has become the new standard of care in elderly and unfit patients with acute myeloid leukemia, with significantly improved overall survival and quality of life. Studies of venetoclax combined with high-dose chemotherapy are emerging with evidence of higher rates of molecular remission. Recently, a growing number of publications bring forth the use of venetoclax in patients with acute lymphoblastic leukemia (ALL). In the current review, we present the biological rationale of BCL-2 inhibition in ALL, how the interplay of BH3 proteins modulate the response and the current clinical experience with various combinations

    CD24 Is a Prognostic Marker for Multiple Myeloma Progression and Survival

    No full text
    Surface antigens are commonly used in flow cytometry assays for the diagnosis of multiple myeloma (MM). Some of these are directly involved in MM pathogenesis or interactions with the microenvironment, but most are used for either diagnostic or prognostic purposes. In a previous study, we showed that in-vitro, CD24-positive plasma cells exhibit a less tumorigenic phenotype. Here, we assessed the prognostic importance of CD24 expression in patients newly diagnosed with MM as it correlates to their clinical course. Immunophenotyping by flow cytometry of 124 patients uniformly treated by a bortezomib-based protocol was performed. The expression of CD24, CD117, CD19, CD45, and CD56 in bone marrow PCs was tested for correlations to clinical parameters. None of the CD markers correlated with the response rates to first-line therapy. However, patients with elevated CD24+ expression on their PCs at diagnosis had a significantly longer PFS (p = 0.002) and OS (p = 0.044). In contrast, the expression of CD117, CD56, or CD45 was found to have no prognostic value; CD19 expression was inversely correlated with PFS alone (p < 0.001) and not with OS. Thus, elevated CD24 expression on PCs appears to be strongly correlated with survival and can be used as a single-surface antigenic prognostic factor in MM

    Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles Modulate Apoptosis, TNF Alpha and Interferon Gamma Response Gene mRNA Expression in T Lymphocytes

    No full text
    Recent studies have highlighted the therapeutic potential of small extracellular bodies derived from mesenchymal stem cells (MSC-sEVs) for various diseases, notably through their ability to alter T-cell differentiation and function. The current study aimed to explore immunomodulatory pathway alterations within T cells through mRNA sequencing of activated T cells cocultured with bone marrow-derived MSC-sEVs. mRNA profiling of activated human T cells cocultured with MSC-sEVs or vehicle control was performed using the QIAGEN Illumina sequencing platform. Pathway networks and biological functions of the differentially expressed genes were analyzed using Ingenuity pathway analysis (IPA)® software, KEGG pathway, GSEA and STRING database. A total of 364 differentially expressed genes were identified in sEV-treated T cells. Canonical pathway analysis highlighted the RhoA signaling pathway. Cellular development, movement, growth and proliferation, cell-to-cell interaction and inflammatory response-related gene expression were altered. KEGG enrichment pathway analysis underscored the apoptosis pathway. GSEA identified enrichment in downregulated genes associated with TNF alpha and interferon gamma response, and upregulated genes related to apoptosis and migration of lymphocytes and T-cell differentiation gene sets. Our findings provide valuable insights into the mechanisms by which MSC-sEVs implement immunomodulatory effects on activated T cells. These findings may contribute to the development of MSC-sEV-based therapies
    corecore