220 research outputs found

    Dissipative Time Evolution of Observables in Non-equilibrium Statistical Quantum Systems

    Get PDF
    We discuss differential-- versus integral--equation based methods describing out--of thermal equilibrium systems and emphasize the importance of a well defined reduction to statistical observables. Applying the projection operator approach, we investigate on the time evolution of expectation values of linear and quadratic polynomials in position and momentum for a statistical anharmonic oscillator with quartic potential. Based on the exact integro-differential equations of motion, we study the first and naive second order approximation which breaks down at secular time-scales. A method is proposed to improve the expansion by a non--perturbative resummation of all quadratic operator correlators consistent with energy conservation for all times. Motion cannot be described by an effective Hamiltonian local in time reflecting non-unitarity of the dissipative entropy generating evolution. We numerically integrate the consistently improved equations of motion for large times. We relate entropy to the uncertainty product, both being expressible in terms of the observables under consideration.Comment: 20 pages, 6 Figure

    Effects of weak self-interactions in a relativistic plasma on cosmological perturbations

    Full text link
    The exact solutions for linear cosmological perturbations which have been obtained for collisionless relativistic matter within thermal field theory are extended to a self-interacting case. The two-loop contributions of scalar λϕ4\lambda\phi^4 theory to the thermal graviton self-energy are evaluated, which give the O(λ)O(\lambda) corrections in the perturbation equations. The changes are found to be perturbative on scales comparable to or larger than the Hubble horizon, but the determination of the large-time damping behavior of subhorizon perturbations requires a resummation of thermally induced masses.Comment: 11 pages, REVTEX, 4 postscript figures included by epsf.sty - expanded version (more details on the resummation of thermal masses which is required for the late-time damping behaviour
    corecore