20 research outputs found

    Matrix compatible solid phase microextraction coating, a greener approach to sample preparation in vegetable matrices

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.foodchem.2016.03.036 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This work proposes the novel PDMS/DVB/PDMS fiber as a greener strategy for analysis by direct immersion solid phase microextraction (SPME) in vegetables. SPME is an established sample preparation approach that has not yet been adequately explored for food analysis in direct immersion mode due to the limitations of the available commercial coatings. The robustness and endurance of this new coating were investigated by direct immersion extractions in raw blended vegetables without any further sample preparation steps. The PDMS/DVB/PDMS coating exhibited superior features related to the capability of the external PDMS layer to protect the commercial coating, and showed improvements in terms of extraction capability and in the cleanability of the coating surface. In addition to having contributed to the recognition of the superior features of this new fiber concept before commercialization, the outcomes of this work serve to confirm advancements in the matrix compatibility of the PDMS-modified fiber, and open new prospects for the development of greener high-throughput analytical methods in food analysis using solid phase microextraction in the near future.European Social FundEuropean CommissionCalabria regio

    Apis mellifera ligustica, Spinola 1806 as bioindicator for detecting environmental contamination: a preliminary study of heavy metal pollution in Trieste, Italy

    Get PDF
    Honeybees have become important tools for the ecotoxicological assessment of soil, water and air metal contamination due to their extraordinary capacity to bioaccumulate toxic metals from the environment. The level of heavy metal pollution in the Trieste city was monitored using foraging bees of Apis mellifera ligustica from hives owned by beekeepers in two sites strategically located in the suburban industrial area and urban ones chosen as control. The metal concentration in foraging bees was determined by inductively coupled plasma-mass spectrometry. The chemical analysis has identified and quantified 11 trace elements accumulated in two different rank orders: Zn> Cu > Sr > Bi > Ni > Cr > Pb = Co > V > Cd > As in foraging bees from the suburban site and Zn > Cu > Sr > Cr > Ni > Bi > Co = V > Pb > As > Cd in bees from urban site. Data revealed concentrations of Cr and Cu significantly higher and concentration of Cd significantly lower in bees from urban sites. The spatial difference and magnitude order in heavy metal accumulation along the urban-suburban gradient are mainly related to the different anthropogenic activity within sampled sites and represent a risk for the human health of people living in the city. We discussed and compared results with the range of values reported in literature

    Contribution of Volcanic and Fumarolic Emission to the Aerosol in Marine Atmosphere in the Central Mediterranean Sea: Results from Med-Oceanor 2017 Cruise Campaign

    Get PDF
    This work studied the contribution of the geogenic sources volcanoes and fumaroles to the aerosol in marine atmosphere in the central Mediterranean basin. For this purpose, in the framework of the Med-Oceanor measurement program, we carried out a cruise campaign in the summer of 2017 to investigate the impact to the aerosol of the most important Mediterranean volcanoes (Mount Etna, Stromboli Island, and Marsili Seamount) and solfatara areas (Phlegraean Fields complex, Volcano Islands, Ischia Island, and Panarea submarine fumarole). We collected PM10 and PM2.5 samples in 12 sites and performed chemical characterization to gather information about the concentration of major and trace elements, elemental carbon (EC), organic carbon (OC), and ionic species. The use of triangular plots and the calculation of enrichment factors confirmed the interception of volcanic plume. We integrated the outcomes from chemical characterization with the use of factor analysis and SEM/EDX analysis for the source apportionment. Anthropogenic and natural sources including shipping emissions, volcanic and fumarolic load, as well as sea spray were identified as the main factors affecting aerosol levels in the study area. Furthermore, we performed pattern recognition analysis by stepwise linear discriminant analysis to seek differences in the composition of PM10 and PM2.5 samples according to their volcanic or solfatara origin.This research was funded by the European Commission—H2020, the ERA-PLANET programme (www.era-planet.eu; contract no. 689443) within the IGOSP project (www.igosp.eu).Peer reviewe

    Development and Application of Green or Sustainable Strategies in Analytical Chemistry

    No full text
    Analytical chemistry is bound to face growing challenges in the near future, especially for the quantification of trace analytes in complex matrices [...

    Development and Application of Green or Sustainable Strategies in Analytical Chemistry

    No full text
    Analytical chemistry is bound to face growing challenges in the near future, especially for the quantification of trace analytes in complex matrices [...

    Advances in Solid-Phase Microextraction

    No full text
    Analysis imposes substantial challenges, especially when dealing with analytes present at trace levels in complex matrices [...

    Traceability of foodstuffs by high tech methodologies of mass spectrometry

    No full text
    Scuola di Dottorato di Scienza e Tecnica "Bernardino Telesio", Organic Materials of Pharmaceutical interest XXIV Ciclo, a.a. 2008-2011Università della Calabri

    Triazine Herbicide and NPK Fertilizer Exposure: Accumulation of Heavy Metals and Rare Earth Elements, Effects on Cuticle Melanization, and Immunocompetence in the Model Species <i>Tenebrio molitor</i>

    No full text
    The increasing use of agrochemicals, including fertilizers and herbicides, has led to worrying metal contamination of soils and waters and raises serious questions about the effects of their transfer to different levels of the trophic web. Accumulation and biomagnification of essential (K, Na, Mg, Zn, Ca), nonessential (Sr, Hg, Rb, Ba, Se, Cd, Cr, Pb, As), and rare earth elements (REEs) were investigated in newly emerged adults of Tenebrio molitor exposed to field-admitted concentrations of a metribuzin-based herbicide and an NPK blend fertilizer. Chemical analyses were performed using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) supported by unsupervised pattern recognition techniques. Physiological parameters such as cuticle melanization, cellular (circulating hemocytes), and humoral (phenoloxidase enzyme activity) immune responses and mass loss were tested as exposure markers in both sexes. The results showed that NPK fertilizer application is the main cause of REE accumulation in beetles over time, besides toxic elements (Sr, Hg, Cr, Rb, Ba, Ni, Al, V, U) also present in the herbicide-treated beetles. The biomagnification of Cu and Zn suggested a high potential for food web transfer in agroecosystems. Gender differences in element concentrations suggested that males and females differ in element uptake and excretion. Differences in phenotypic traits show that exposure affects metabolic pathways involving sequestration and detoxification during the transition phase from immature-to-mature beetles, triggering a redistribution of resources between sexual maturation and immune responses. Our findings highlight the importance of setting limits for metals and REEs in herbicides and fertilizers to avoid adverse effects on species that provide ecosystem services and contribute to soil health in agroecosystems
    corecore