4 research outputs found

    Random sequential adsorption of spheres on a cylinder

    Full text link
    Inspired by observations of beads packed on a thin string in such systems as sea-grapes and dental plaque, we study the random sequential adsorption of spheres on a cylinder. We determine the asymptotic fractional coverage of the cylinder as a function of the sole parameter in the problem, the ratio of the sphere radius to the cylinder radius (for a very long cylinder) using a combination of analysis and numerical simulations. Examining the asymptotic structures, we find weak chiral ordering on sufficiently small spatial scales. Experiments involving colloidal microspheres that can attach irreversibly to a silica wire via electrostatic forces or DNA hybridization allow us to verify our predictions for the asymptotic coverage

    Polyhedral plasmonic nanoclusters through multi-step colloidal chemistry

    No full text
    We describe a new approach to making plasmonic metamolecules with well-controlled resonances at optical wavelengths. Metamolecules are highly symmetric, subwavelength-scale clusters of metal and dielectric. They are of interest for metafluids, isotropic optical materials with applications in imaging and optical communications. For such applications, the morphology must be precisely controlled: the optical response is sensitive to nanometer-scale variations in the thickness of metal coatings and the distances between metal surfaces. To achieve this precision, we use a multi-step colloidal synthesis approach. Starting from highly monodisperse silica seeds, we grow octahedral clusters of polystyrene spheres using seeded-growth emulsion polymerization. We then overgrow the silica and remove the polystyrene to create a dimpled template. Finally, we attach six silica satellites to the template and coat them with gold. Using single-cluster spectroscopy, we show that the plasmonic resonances are reproducible from cluster to cluster. By comparing the spectra to theory, we show that the multi-step synthesis approach can control the distances between metallic surfaces to nanometer-scale precision. More broadly, our approach shows how metamolecules can be produced in bulk by combining different, high-yield colloidal synthesis steps, analogous to how small molecules are produced by multi-step chemical reactions.Advanced Materials by DesignInitiative d'excellence de l'Université de Bordeau
    corecore