2 research outputs found

    <i>Nephthea</i> sp. inhibits biofilm, DNA gyrase, HSP90, and DHFR: <i>in vitro</i>, <i>in silico</i>, and pharmacokinetics studies

    No full text
    This study attempts to identify and assess a novel marine-derived antibiofilm agent. The antibacterial activity of n-hexane, dichloromethane, ethyl acetate, and butanol fractions from the crude extract of soft coral Nephthea sp. was evaluated against six microorganisms.Ethyl acetate fraction considered the most effective one against Bacillus subtilis, Escherichia coli, and Candida, investigated potential biofilm inhibition against the tested strains. Seventeen secondary metabolites were identified using (UPLC-Q/TOF-MS) responsible for these biological activities of the active fraction. Additionally, a molecular docking study showed free binding energy of −7.5 kcal/mol; Azamial A had the highest binding affinity for the DNA gyrase enzyme, while Sinularectin had −8.3 and −7.6 kcal/mol for the DHFR and HSP90 enzymes, respectively. Moreover, pharmacokinetics and (ADME) studies for Azamial A and Sinularectin were performed. Finally, results were confirmed by the in vitro enzymatic inhibitory effect of ethyl acetate fraction suggested in the in-silico study.</p

    A new cembranoid from the Red Sea soft coral <i>Sarcophyton acutum</i>

    No full text
    The Red Sea soft coral Sarcophyton acutum ethyl acetate extract has afforded one new cembranoid; sarcacutumolid A (1), along with six known metabolites have been isolated from S. acutum for the first time (2-7). Chemical structures were elucidated by employing several spectroscopic analyses. The cytotoxic potential of the isolated compounds was assessed against four human cancer cell lines; hepatocellular (HepG2), cervical (HeLa), breast (MCF-7) and colorectal cancer (Colo-205). Sarcacutumolid A (1) and gorgosterol (7) inhibited colorectal cancer cell proliferation in a concentration-dependent manner with IC50 values of 35.5 and 44.0 μM, respectively.</p
    corecore