668 research outputs found

    Stellar neutrino energy loss rates due to 24^{24}Mg suitable for O+Ne+Mg core simulations

    Full text link
    Neutrino losses from proto-neutron stars play a pivotal role to decide if these stars would be crushed into black holes or explode as supernovae. Recent observations of subluminous Type II-P supernovae (e.g., 2005cs, 2003gd, 1999br, 1997D) were able to rejuvenate the interest in 8-10 M_{\odot} stars which develop O+Ne+Mg cores. Simulation results of O+Ne+Mg cores show varying results in converting the collapse into an explosion. The neutrino energy loss rates are important input parameters in core collapse simulations. Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has been used for calculation of neutrino energy loss rates due to 24^{24}Mg in stellar matter. The rates are presented on a detailed density-temperature grid suitable for simulation purposes. The calculated neutrino energy loss rates are enhanced up to more than one order of magnitude compared to the shell model calculations and favor a lower entropy for the core of these massive stars.Comment: 20 pages, 4 figures, 2 table

    Deep learnability: using neural networks to quantify language similarity and learnability

    Get PDF
    Learning a second language (L2) usually progresses faster if a learner's L2 is similar to their first language (L1). Yet global similarity between languages is difficult to quantify, obscuring its precise effect on learnability. Further, the combinatorial explosion of possible L1 and L2 language pairs, combined with the difficulty of controlling for idiosyncratic differences across language pairs and language learners, limits the generalisability of the experimental approach. In this study, we present a different approach, employing artificial languages and artificial learners. We built a set of five artificial languages whose underlying grammars and vocabulary were manipulated to ensure a known degree of similarity between each pair of languages. We next built a series of neural network models for each language, and sequentially trained them on pairs of languages. These models thus represented L1 speakers learning L2s. By observing the change in activity of the cells between the L1-speaker model and the L2-learner model, we estimated how much change was needed for the model to learn the new language. We then compared the change for each L1/L2 bilingual model to the underlying similarity across each language pair. The results showed that this approach can not only recover the facilitative effect of similarity on L2 acquisition, but can also offer new insights into the differential effects across different domains of similarity. These findings serve as a proof of concept for a generalisable approach that can be applied to natural languages

    Gamow-Teller transitions and deformation in the proton-neutron random phase approximation

    Full text link
    We investigate reliability of Gamow-Teller transition strengths computed in the proton-neutron random phase approximation, comparing with exact results from diagonalization in full 0ω0\hbar\omega shell-model spaces. By allowing the Hartree-Fock state to be deformed, we obtain good results for a wide variety of nuclides, even though we do not project onto good angular momentum. We suggest that deformation is as important or more so than pairing for Gamow-Teller transitions.Comment: 8 pages, 5 figures; added references, clarified discussion with regards to stabilit

    Fine-Grid Calculations for Stellar Electron and Positron Capture Rates on Fe-Isotopes

    Full text link
    The acquisition of precise and reliable nuclear data is a prerequisite to success for stellar evolution and nucleosynthesis studies. Core-collapse simulators find it challenging to generate an explosion from the collapse of the core of massive stars. It is believed that a better understanding of the microphysics of core-collapse can lead to successful results. The weak interaction processes are able to trigger the collapse and control the lepton-to-baryon ratio (YeY_{e}) of the core material. It is suggested that the temporal variation of YeY_{e} within the core of a massive star has a pivotal role to play in the stellar evolution and a fine-tuning of this parameter at various stages of presupernova evolution is the key to generate an explosion. During the presupernova evolution of massive stars, isotopes of iron, mainly 54,55,56^{54,55,56}Fe, are considered to be key players in controlling YeY_{e} ratio via electron capture on these nuclide. Recently an improved microscopic calculation of weak interaction mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic \textit{state-by-state} calculation of stellar capture rates which greatly increases the reliability of calculated rates. The results were suggestive of some fine-tuning of the YeY_{e} ratio during various phases of stellar evolution. Here we present for the first time the fine-grid calculation of the electron and positron capture rates on 54,55,56^{54,55,56}Fe. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes.Comment: 21 pages, 6 ps figures and 2 table

    Motivation for Choosing Teaching as a Career and Job Satisfaction with Context of Pakistan Administrative Kashmir

    Get PDF
    This study examines the career motivation and job satisfaction of 150 public primary school teachers of Pakistan administrative Kashmir who have chosen teaching as a career. So, they were asked questions about factors influencing to choosing teaching as career perceptions, major expectations and five factors of job satisfaction which include work, promotion, salary, co-worker and supervision. A profile of the participants was then developed by analyzing their responses in quantitative way as being descriptive, statistical, and inductive steps. It has been examined that both extrinsic and intrinsic motivations play a role when individuals choose teaching as a career but most of the primary teachers choose teaching career for intrinsic reasons such as they always wanted to become a teacher as they wanted to do something for nation through this profession. But they are moderate in term of job satisfaction. Keywords: Motivation, Teaching Career, Job satisfaction, Primary Teachers and AJ&

    Relief of chronic pain associated with increase in midline frontal theta power

    Get PDF
    INTRODUCTION: There is a need to identify objective cortical electrophysiological correlates for pain relief that could potentially contribute to a better pain management. However, the field of developing brain biomarkers for pain relief is still largely underexplored. OBJECTIVES: The objective of this study was to investigate cortical electrophysiological correlates associated with relief from chronic pain. Those features of pain relief could serve as potential targets for novel therapeutic interventions to treat pain. METHODS: In 12 patients with chronic pain in the upper or lower extremity undergoing a clinically indicated nerve block procedure, brain activity was recorded by means of electroencephalogram before and 30 minutes after the nerve block procedure. To determine the specific cortical electrophysiological correlates of relief from chronic pain, 12 healthy participants undergoing cold-pressor test to induce experimental acute pain were used as a control group. The data were analyzed to characterize power spectral density patterns of pain relief and identify their source generators at cortical level. RESULTS: Chronic pain relief was associated with significant delta, theta, and alpha power increase at the frontal area. However, only midfrontal theta power increase showed significant positive correlation with magnitude of reduction in pain intensity. The sources of theta power rebound were located in the left dorsolateral prefrontal cortex (DLPFC) and midline frontal cortex. Furthermore, theta power increase in the midline frontal cortex was significantly higher with chronic vs acute pain relief. CONCLUSION: These findings may provide basis for targeting chronic pain relief via modulation of the midline frontal theta oscillations
    corecore