34 research outputs found

    Simple method for large-scale production of macrophage activating factor GcMAF

    Get PDF
    Human group-specific component protein (Gc protein) is a multifunctional serum protein which has three common allelic variants, Gc1F, Gc1S and Gc2 in humans. Gc1 contains an O-linked trisaccharide [sialic acid-galactose-N-acetylgalactosamine (GalNAc)] on the threonine420 (Thr420) residue and can be converted to a potent macrophage activating factor (GcMAF) by selective removal of sialic acid and galactose, leaving GalNAc at Thr420. In contrast, Gc2 is not glycosylated. GcMAF is considered a promising candidate for immunotherapy and antiangiogenic therapy of cancers and has attracted great interest, but it remains difficult to compare findings among research groups because different procedures have been used to prepare GcMAF. Here, we present a simple, practical method to prepare high-quality GcMAF by overexpressing Gc-protein in a serum-free suspension culture of ExpiCHO-S cells, without the need for a de-glycosylation step. We believe this protocol is suitable for large-scale production of GcMAF for functional analysis and clinical testing

    Essential Role of NMDA Receptor Channel ε4 Subunit (GluN2D) in the Effects of Phencyclidine, but Not Methamphetamine

    Get PDF
    Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, increases locomotor activity in rodents and causes schizophrenia-like symptoms in humans. Although activation of the dopamine (DA) pathway is hypothesized to mediate these effects of PCP, the precise mechanisms by which PCP induces its effects remain to be elucidated. The present study investigated the effect of PCP on extracellular levels of DA (DAex) in the striatum and prefrontal cortex (PFC) using in vivo microdialysis in mice lacking the NMDA receptor channel ε1 or ε4 subunit (GluRε1 [GluN2A] or GluRε4 [GluN2D]) and locomotor activity. PCP significantly increased DAex in wildtype and GluRε1 knockout mice, but not in GluRε4 knockout mice, in the striatum and PFC. Acute and repeated administration of PCP did not increase locomotor activity in GluRε4 knockout mice. The present results suggest that PCP enhances dopaminergic transmission and increases locomotor activity by acting at GluRε4

    In Vivo Function and Evolution of the Eutherian-Specific Pluripotency Marker UTF1

    No full text
    Embryogenesis in placental mammals is sustained by exquisite interplay between the embryo proper and placenta. UTF1 is a developmentally regulated gene expressed in both cell lineages. Here, we analyzed the consequence of loss of the UTF1 gene during mouse development. We found that homozygous UTF1 mutant newborn mice were significantly smaller than wild-type or heterozygous mutant mice, suggesting that placental insufficiency caused by the loss of UTF1 expression in extra-embryonic ectodermal cells at least in part contributed to this phenotype. We also found that the effects of loss of UTF1 expression in embryonic stem cells on their pluripotency were very subtle. Genome structure and sequence comparisons revealed that the UTF1 gene exists only in placental mammals. Our analyses of a family of genes with homology to UTF1 revealed a possible mechanism by which placental mammals have evolved the UTF1 genes.This study was supported in part by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), and mostly by the Support Program for the Strategic Research Foundation at Private Universities, 2008–2012. This study was performed as a part of the Core Research for Evolutional Science and Technology (CREST) Agency. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Behavioral impairment in SHATI/NAT8L knockout mice via dysfunction of myelination development

    Get PDF
    We have identified SHATI/NAT8L in the brain of mice treated with methamphetamine. Recently, it has been reported that SHATI is N-acetyltransferase 8-like protein (NAT8L) that produces N-acetylaspatate (NAA) from aspartate and acetyl-CoA. We have generated SHATI/NAT8L knockout (Shati−/−) mouse which demonstrates behavioral deficits that are not rescued by single NAA supplementation, although the reason for which is still not clarified. It is possible that the developmental impairment results from deletion of SHATI/NAT8L in the mouse brain, because NAA is involved in myelination through lipid synthesis in oligodendrocytes. However, it remains unclear whether SHATI/NAT8L is involved in brain development. In this study, we found that the expression of Shati/Nat8l mRNA was increased with brain development in mice, while there was a reduction in the myelin basic protein (MBP) level in the prefrontal cortex of juvenile, but not adult, Shati−/− mice. Next, we found that deletion of SHATI/NAT8L induces several behavioral deficits in mice, and that glyceryltriacetate (GTA) treatment ameliorates the behavioral impairments and normalizes the reduced protein level of MBP in juvenile Shati−/− mice. These findings suggest that SHATI/NAT8L is involved in myelination in the juvenile mouse brain via supplementation of acetate derived from NAA. Thus, reduction of SHATI/NAT8L induces developmental neuronal dysfunction

    Enhanced stability of hippocampal place representation caused by reduced magnesium block of NMDA receptors in the dentate gyrus

    Get PDF
    BACKGROUND: Voltage-dependent block of the NMDA receptor by Mg(2+) is thought to be central to the unique involvement of this receptor in higher brain functions. However, the in vivo role of the Mg(2+) block in the mammalian brain has not yet been investigated, because brain-wide loss of the Mg(2+) block causes perinatal lethality. In this study, we used a brain-region specific knock-in mouse expressing an NMDA receptor that is defective for the Mg(2+) block in order to test its role in neural information processing. RESULTS: We devised a method to induce a single amino acid substitution (N595Q) in the GluN2A subunit of the NMDA receptor, specifically in the hippocampal dentate gyrus in mice. This mutation reduced the Mg(2+) block at the medial perforant path–granule cell synapse and facilitated synaptic potentiation induced by high-frequency stimulation. The mutants had more stable hippocampal place fields in the CA1 than the controls did, and place representation showed lower sensitivity to visual differences. In addition, behavioral tests revealed that the mutants had a spatial working memory deficit. CONCLUSIONS: These results suggest that the Mg(2+) block in the dentate gyrus regulates hippocampal spatial information processing by attenuating activity-dependent synaptic potentiation in the dentate gyrus

    Induction of neuronal axon outgrowth by Shati/Nat8l via energy metabolism in mice cultured neurons

    Get PDF
    A novel N-acetyltransferase, Shati/Nat8l, was identified in the nucleus accumbens of mice repeatedly treated with methamphetamine (METH). Shati/Nat8l has been reported to inhibit the pharmacological action induced by METH. Shati/Nat8l produces N-acetylaspartate from aspartate and acetyl-CoA. Previously, we reported that overexpression of Shati/Nat8l in nucleus accumbens attenuates the response to METH by N-acetylaspartylglutamate (which is derived from N-acetylaspartate)-mGluR3 signaling in the mice brain. In the present study, to clarify the type of cells that produce Shati/Nat8l, we carried out in-situ hybridization for the detection of Shati/Nat8l mRNA along with immunohistochemical studies using serial sections of mice brain. Shati/Nat8l mRNA was detected in neuronal cells, but not in astrocytes or microglia cells. Next, we investigated the function of Shati/Nat8l in the neuronal cells in mice brain; then, we used an adeno-associated virus vector containing Shati/Nat8l for transfection and overexpression of Shati/Nat8l protein into the primary cultured neurons to investigate the contribution toward the neuronal activity of Shati/Nat8l. Overexpression of Shati/Nat8l in the mice primary cultured neurons induced axonal growth, but not dendrite elongation at day 1.5 (DIV). This finding indicated that Shati/Nat8l contributes toward neuronal development. LY341495, a selective group II mGluRs antagonist, did not abolish this axonal growth, and N-acetylaspartylglutamate itself did not abolish axon outgrowth in the same cultured system. The cultured neurons overexpressing Shati/Nat8l contained high ATP, suggesting that axon outgrowth is dependent on energy metabolism. This study shows that Shati/Nat8l in the neuron may induce axon outgrowth by ATP synthesis and not through mGluR3 signaling

    Cognitive and Socio-Emotional Deficits in Platelet-Derived Growth Factor Receptor-β Gene Knockout Mice

    Get PDF
    Platelet-derived growth factor (PDGF) is a potent mitogen. Extensive in vivo studies of PDGF and its receptor (PDGFR) genes have reported that PDGF plays an important role in embryogenesis and development of the central nervous system (CNS). Furthermore, PDGF and the β subunit of the PDGF receptor (PDGFR-β) have been reported to be associated with schizophrenia and autism. However, no study has reported on the effects of PDGF deletion on mice behavior. Here we generated novel mutant mice (PDGFR-β KO) in which PDGFR-β was conditionally deleted in CNS neurons using the Cre/loxP system. Mice without the Cre transgene but with floxed PDGFR-β were used as controls. Both groups of mice reached adulthood without any apparent anatomical defects. These mice were further examined by conducting several behavioral tests for spatial memory, social interaction, conditioning, prepulse inhibition, and forced swimming. The test results indicated that the PDGFR-β KO mice show deficits in all of these areas. Furthermore, an immunohistochemical study of the PDGFR-β KO mice brain indicated that the number of parvalbumin (calcium-binding protein)-positive (i.e., putatively γ-aminobutyric acid-ergic) neurons was low in the amygdala, hippocampus, and medial prefrontal cortex. Neurophysiological studies indicated that sensory-evoked gamma oscillation was low in the PDGFR-β KO mice, consistent with the observed reduction in the number of parvalbumin-positive neurons. These results suggest that PDGFR-β plays an important role in cognitive and socioemotional functions, and that deficits in this receptor may partly underlie the cognitive and socioemotional deficits observed in schizophrenic and autistic patients
    corecore