32 research outputs found

    Digital Signal Processing for Particle Detectors in Front-End Electronics

    Get PDF
    The Large Hadron Collider (LHC) at CERN is currently being started up after a long shutdown. Another similar maintenance and upgrade period is due to take place in a few years. The luminosity and maximum beam energy will be increased after the shutdowns. Many upgrade projects stem from the increased demands from the changed environment and the opportunity of installation work during the shutdowns. The CMS GEM collaboration proposes to upgrade the muon system in CMS experiment by adding Gaseous Electron Multiplier (GEM) chambers. The new GEM-detectors need new Front-End electronics. There are two parallel development branches for mixed-signal ASICs; one comes with analog signal processing (VFAT3-chip) and another with analog and digital signal processing (GdSP-chip). This Thesis covers the development of the digital signal processing for the GdSP-chip. The design is described on algorithm level and with block diagrams. The signal originating in the triple GEM-detector sets special challenges on the signal processing. The time constant in the analog shaper is programmable due to irregularities in the GEM-signal. This in turn poses challenges for the digital signal processing. The pulse peaking time and signal bandwidth depend on the choice made for the time constant. The basic signal processing techniques and needs are common for many detectors. Most of the digital signal processing has shared requirements with an existing, well-tested Front-End chip. Time pick-off and trigger production was not included in these shared tasks. Several time pick-off methods were considered and compared with simulations. The simulations were performed first using Simulink running on Matlab and then on Cadence tools using Verilog hardware description language. Time resolution is an important attribute determined jointly by the detector and the signal processing. It is related to the probability to associate the measured pulse with the correct event. The effect of the different time pick-off methods on time resolution was compared with simulations. Only the most promising designs were developed further. Constant Fraction Discriminator and Pulse Recognition, the two most promising algorithms, were compared against analog Constant Fraction Discriminator and Time over Threshold time pick-off methods. The time resolutions obtained with noiseless signal were found to be comparable. At least in gas detector applications digital signal processing should not be ruled out of fear for deteriorated time resolution. The proposed digital signal processing chain for GdSP includes Baseline Correction, Digital Shaper, Integrator, Zero Suppression and Bunch Crossing Identification. The Baseline Correction includes options for using fixed baseline removal and moving average filter. In addition it contains a small memory, which can be used as test signal input or as look-up-table et cetera. Pole-zero cancellation is proposed for digital shaping. The integrator filters high frequency noise. The Constant Fraction Discriminator was found optimal for Bunch Crossing Identification

    Study of interpad-gap of HPK 3.1 production LGADs with Transient Current Technique

    Get PDF
    The Phase-2 upgrade of the Large Hadron Collider (LHC) to High-Luminosity LHC (HL-LHC) allows an increase in the operational luminosity value by a factor of 5-7 that will result in delivering 3000 fb(-1) or more integrated luminosity. Due to high luminosity, the number of interactions per bunch crossings (pileup) will increase up to a value of 140-200. To cope with high pileup rates, a precision minimum ionising particles (MIPs) timing detector (MTD) with a time resolution of similar to 30-40 ps and hermetic coverage up to a pseudo-rapidity of vertical bar eta vertical bar = 3 is proposed by the Compact Muon Solenoid (CMS) experiment. An endcap part (1.6 <vertical bar eta vertical bar <3) of the MTD, called the endcap timing layer, will be based on low-gain avalanche detector (LGAD) technology. LGADs provide a good timing resolution due to a combination of a fast signal rise time and high signal-to-noise ratio. The performance of the ETL depends on optimising the crucial features of the sensors, namely; gain, signal homogeneity, fill factor, leakage current, uniformity of multiple-pad sensors and long term stability. The paper mainly focuses on the study of the fill factor of LGADs with varying temperature and irradiation at varying proton fluences as these sensors will be operated at low temperatures and are subjected to a high radiation environment. The 3.1 production of LGADs from Hamamatsu Photonics K.K. (HPK) includes 2x2 sensors with different structures, in particular, different values of narrower inactive region widths between the pads, called the no-gain region. In this paper, the term interpad-gap is used instead of no-gain region in order to follow the conventional terminology. These sensors have been designed to study their fill factor, which is the ratio of the area within the active region (gain region) to the total sensor area. A comparative study on the dependence of breakdown voltage with the interpad-gap width for the sensors has been carried out. Using infrared light (as the electron-hole pair creation by IR laser mimics closely to the traversing of MIPs) from the Scanning-Transient Current Technique (Scanning-TCT) set-up shows that the fill factor does not vary significantly with a variation in temperature and irradiation at high proton fluences.Peer reviewe

    Irradiated Single Crystal Chemical Vapor Deposition Diamond Characterized with Various Ionizing Particles

    Get PDF
    The radiation hardness of diamond at the sensor level is studied by irradiating five sensors and studying them with various particle sources, without making any modifications to the sensors in between. The electronics used in the characterization is not irradiated to ensure that any observed effect is merely due to the sensor. Three sensors have received a fluence of 10 (14) protons cm(-2) and two 5 center dot 10 (15) protons cm(-2). At the lower fluence, the impact on the charge collection efficiency is very small, when the applied bias voltage is above 1 V mu m(-1). For the higher fluence, the charge collection efficiency is lower than expected based on earlier studies of diamond radiation hardness on the substrate level. Furthermore, it is noticed that the irradiation has a stronger impact on the signal amplitude recorded with a fast timing than with a charge sensitive amplifier.Peer reviewe

    Characterisation of the dip-bump structure observed in proton-proton elastic scattering at root s=8 TeV

    Get PDF
    We describe an analysis comparing the p (p) over bar elastic cross section as measured by the D0 Collaboration at a center-of-mass energy of 1.96 TeV to that in pp collisions as measured by the TOTEM Collaboration at 2.76, 7, 8, and 13 TeVusing a model-independent approach. The TOTEM cross sections, extrapolated to a center-of-mass energy of root s = 1.96 TeV, are compared with the D0 measurement in the region of the diffractive minimum and the second maximum of the pp cross section. The two data sets disagree at the 3.4s level and thus provide evidence for the t-channel exchange of a colorless, C-odd gluonic compound, also known as the odderon. We combine these results with a TOTEM analysis of the same C-odd exchange based on the total cross section and the ratio of the real to imaginary parts of the forward elastic strong interaction scattering amplitude in pp scattering for which the significance is between 3.4s and 4.6s. The combined significance is larger than 5 sigma and is interpreted as the first observation of the exchange of a colorless, C-odd gluonic compound.Peer reviewe

    Odderon Exchange from Elastic Scattering Differences between pp and p(p)over-bar Data at 1.96 TeV and from pp Forward Scattering Measurements

    Get PDF
    We describe an analysis comparing the p (p) over bar elastic cross section as measured by the D0 Collaboration at a center-of-mass energy of 1.96 TeV to that in pp collisions as measured by the TOTEM Collaboration at 2.76, 7, 8, and 13 TeVusing a model-independent approach. The TOTEM cross sections, extrapolated to a center-of-mass energy of root s = 1.96 TeV, are compared with the D0 measurement in the region of the diffractive minimum and the second maximum of the pp cross section. The two data sets disagree at the 3.4s level and thus provide evidence for the t-channel exchange of a colorless, C-odd gluonic compound, also known as the odderon. We combine these results with a TOTEM analysis of the same C-odd exchange based on the total cross section and the ratio of the real to imaginary parts of the forward elastic strong interaction scattering amplitude in pp scattering for which the significance is between 3.4s and 4.6s. The combined significance is larger than 5 sigma and is interpreted as the first observation of the exchange of a colorless, C-odd gluonic compound.Peer reviewe

    First Search for Exclusive Diphoton Production at High Mass with Tagged Protons in Proton-Proton Collisions at root s=13 TeV

    Get PDF
    A search for exclusive two-photon production via photon exchange in proton-proton collisions, pp -> p gamma gamma p with intact protons, is presented. The data correspond to an integrated luminosity of 9.4 fb(-1) collected in 2016 using the CMS and TOTEM detectors at a center-of-mass energy of 13 TeVat the LHC. Events are selected with a diphoton invariant mass above 350 GeVand with both protons intact in the final state, to reduce backgrounds from strong interactions. The events of interest are those where the invariant mass and rapidity calculated from the momentum losses of the forward-moving protons match the mass and rapidity of the central, two-photon system. No events are found that satisfy this condition. Interpreting this result in an effective dimension-8 extension of the standard model, the first limits are set on the two anomalous four-photon coupling parameters. If the other parameter is constrained to its standard model value, the limits at 95% confidence level are vertical bar zeta(1)vertical bar < 2.9 x 10(-1)3 GeV-4 and vertical bar zeta(2)vertical bar < 6.0 x 10(-13) GeV-4.Peer reviewe

    Multispectral photon-counting for medical imaging and beam characterization

    Get PDF
    We present the current status of our project of developing a photon counting detector for medical imaging. An example motivation lays in producing a monitoring and dosimetry device for boron neutron capture therapy, currently not commercially available. Our approach combines in-house developed detectors based on cadmium telluride or thick silicon with readout chip technology developed for particle physics experiments at CERN. Here we describe the manufacturing process of our sensors as well as the processing steps for the assembly of first prototypes. The prototypes use currently the PSI46digV2.1-r readout chip. The accompanying readout electronics chain that was used for first measurements will also be discussed. Finally we present an advanced algorithm developed by us for image reconstruction using such photon counting detectors with focus on boron neutron capture therapy. This work is conducted within a consortium of Finnish research groups from Helsinki Institute of Physics, Aalto University, Lappeenranta-Lahti University of Technology LUT and Radiation and Nuclear Safety Authority (STUK) under the RADDESS program of Academy of Finland.Peer reviewe

    Search for central exclusive production of top quark pairs in proton-proton collisions at s= \sqrt{s} = 13 TeV with tagged protons

    No full text
    A search for the central exclusive production of top quark-antiquark pairs (ttˉ \mathrm{t} \bar{\mathrm{t}} ) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb1 ^{-1} . The ttˉ \mathrm{t} \bar{\mathrm{t}} decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%.A search for the central exclusive production of top quark-antiquark pairs (ttˉ\mathrm{t\bar{t}}) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb1^{-1}. The ttˉ\mathrm{t\bar{t}} decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%

    Search for central exclusive production of top quark pairs in proton-proton collisions at s\sqrt{s} = 13 TeV with tagged protons

    No full text
    International audienceA search for the central exclusive production of top quark-antiquark pairs (ttˉ\mathrm{t\bar{t}}) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb1^{-1}. The ttˉ\mathrm{t\bar{t}} decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%
    corecore