15,933 research outputs found

    Levels of abstraction in human supervisory control teams

    Get PDF
    This paper aims to report a study into the levels of abstraction hierarchy (LOAH) in two energy distribution teams. The original proposition for the LOAH was that it depicted five levels of system representation, working from functional purpose through to physical form to determine causes of a malfunction, or from physical form to functional purpose to determine the purpose of system function. The LOAH has been widely used throughout human supervisory control research to explain individual behaviour. The research seeks to focus on the application the LOAH to human supervisory control teams in semi-automated “intelligent” systems

    Modulated phases in a three-dimensional Maier-Saupe model with competing interactions

    Full text link
    This work is dedicated to the study of the discrete version of the Maier-Saupe model in the presence of competing interactions. The competition between interactions favoring different orientational ordering produces a rich phase diagram including modulated phases. Using a mean-field approach and Monte Carlo simulations, we show that the proposed model exhibits isotropic and nematic phases and also a series of modulated phases that meet at a multicritical point, a Lifshitz point. Though the Monte Carlo and mean-field phase diagrams show some quantitative disagreements, the Monte Carlo simulations corroborate the general behavior found within the mean-field approximation.We thank P. Gomes, R. Kaul, G. Landi, M. Oliveira, R. Oliveira, and S. Salinas for useful discussions and suggestions. P.F.B. was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) and the Condensed Matter Theory Visitors Program at Boston University. N.X. and A.W.S. were funded in part by the NSF under Grant No. DMR-1410126. Some of the calculations were carried out on Boston University's Shared Computing Cluster. (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Condensed Matter Theory Visitors Program at Boston University; DMR-1410126 - NSF)Accepted manuscrip
    corecore