research

Modulated phases in a three-dimensional Maier-Saupe model with competing interactions

Abstract

This work is dedicated to the study of the discrete version of the Maier-Saupe model in the presence of competing interactions. The competition between interactions favoring different orientational ordering produces a rich phase diagram including modulated phases. Using a mean-field approach and Monte Carlo simulations, we show that the proposed model exhibits isotropic and nematic phases and also a series of modulated phases that meet at a multicritical point, a Lifshitz point. Though the Monte Carlo and mean-field phase diagrams show some quantitative disagreements, the Monte Carlo simulations corroborate the general behavior found within the mean-field approximation.We thank P. Gomes, R. Kaul, G. Landi, M. Oliveira, R. Oliveira, and S. Salinas for useful discussions and suggestions. P.F.B. was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) and the Condensed Matter Theory Visitors Program at Boston University. N.X. and A.W.S. were funded in part by the NSF under Grant No. DMR-1410126. Some of the calculations were carried out on Boston University's Shared Computing Cluster. (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Condensed Matter Theory Visitors Program at Boston University; DMR-1410126 - NSF)Accepted manuscrip

    Similar works