2 research outputs found

    Table_1_Predictive factors and prognosis of immune checkpoint inhibitor-related pneumonitis in non-small cell lung cancer patients.docx

    No full text
    ObjectiveTo investigate the influencing factors and prognosis of immune checkpoint inhibitor-related pneumonitis (CIP) in advanced non-small cell lung cancer (NSCLC) patients during or after receiving immune checkpoint inhibitors(ICIs).MethodsThe clinical and laboratory indicator data of 222 advanced NSCLC patients treated with PD-1/PD-L1 inhibitors at the First Affiliated Hospital of Zhengzhou University between December 2017 and November 2021 were collected retrospectively. The patients were divided into a CIP group (n=41) and a non-CIP group (n=181) according to whether they developed CIP or not before the end of follow-up. Logistic regression was used to evaluate risk factors of CIP, and Kaplan‒Meier curves were used to describe the overall survival (OS) of different groups. The log-rank test was used to compare the survival of different groups.ResultsThere were 41 patients who developed CIP, and the incidence rate of CIP was 18.5%. Univariate and multivariate logistic regression analyses showed that low pretreatment hemoglobin (HB) and albumin (ALB) levels were independent risk factors for CIP. Univariate analysis suggested that history of chest radiotherapy was related to the incidence of CIP. The median OS of the CIP group and non-CIP were 15.63 months and 30.50 months (HR:2.167; 95%CI: 1.355-3.463, PConclusionLower pretreatment HB and ALB levels were independent risk factors for CIP. A high NLR level, a low ALB level and the development of CIP were independent risk factors for the prognosis of advanced NSCLC patients treated with ICIs.</p

    Fabrication of Polymeric Micelles with Aggregation-Induced Emission and Forster Resonance Energy Transfer for Anticancer Drug Delivery

    No full text
    With the aim of obtaining effective cancer therapy with simultaneous cellular imaging, dynamic drug-release monitoring, and chemotherapeutic treatment, a polymeric micelle with aggregation-induced emission (AIE) imaging and a Forster resonance energy transfer (FRET) effect was fabricated as the drug carrier. An amphiphilic conjugate of 1H-pyrrole-1-propanoicacid (MAL)–poly­(ethylene glycol) (PEG)–Tripp-bearing AIE molecules were synthesized and self-assembled into micelles to load the anticancer drug doxorubicin (DOX). Spherical DOX-loaded micelles with the mean size of 106 nm were obtained with good physiological stability (CMC, 12.5 μg/mL), high drug-loading capacity (10.4%), and encapsulation efficiency (86%). The cellular uptake behavior of DOX-loaded MAL–PEG–Tripp micelles was visible for high-quality intracellular imaging due to the AIE property. The delivery of DOX from the drug-loaded micelles was dynamic monitored by the FRET effect between the DOX and MAL–PEG–Tripp. Both in vitro (IC50, 2.36 μg/mL) and in vivo anticancer activity tests revealed that the DOX-loaded MAL–PEG–Tripp micelles exhibited promising therapeutic efficacy to cancer with low systematic toxicity. In summary, this micelle provided an effective way to fabricate novel nanoplatform for intracellular imaging, drug-delivery tracing, and chemotherapy
    corecore