43 research outputs found

    Fibre from pumpkin (Cucurbita pepo L.) seeds and rinds : physico-chemical properties, antioxidant capacity and application as bakery product ingredients.

    Get PDF
    Introduction: The aims of this study were to determine the proximate composition, functional properties and antioxidant activity of pumpkin seeds and rind. Besides, the effects of dietary fibre in pumpkin seeds and rinds on bread qualities and properties were evaluated. Methods: Formulations for bread substituted with 0%, 5% and 10% pumpkin seed and rind, respectively were produced. Sensory evaluation of the prepared bread samples for such attributes as appearance, aroma, flavour, texture and overall acceptability was undertaken. The physical properties of the bread samples, including dough expansion, loaf volume, crumb colour and bread texture, were determined. Proximate analysis and determination of antioxidant activity of the bread samples were also conducted. Results: Crude fibre of the pumpkin seeds and pumpkin rinds was high at 31.48% and 14.83%, respectively. The total phenolic compound (TPC) and DPPH radical scavenging activity for the pumpkin rinds were 38.60 mg GAE/ 100 g dry weight and 69.38%, respectively, which were higher than those of pumpkin seeds. A 5% level of pumpkin rind bread gave the best overall acceptability and sensory attributes, followed by 5% pumpkin seed bread. Total dietary fibre, total phenolic compound and DPPH radical scavenging activity in breads substituted with 5% pumpkin seed and 5% pumpkin rind flour were higher than the values in control bread. Conclusion: Pumpkin seeds and rinds can be used as dietary fibre sources in bakery

    Optimization of supercritical fluid extraction of phytosterol from roselle seeds with a central composite design model.

    Get PDF
    Recovery of phytosterol from roselle (Hibiscus sabdariffa L.) seeds via supercritical carbon dioxide extraction modified with ethanol was investigated at pressures of 200–400 bar, temperatures from 40 to 80 ◦C and at supercritical fluid flow rates from 10 to 20 ml/min. It was found that an entrainer such as ethanol could enhance the solubility and extraction yield of roselle seed oil from the seed matrix, compared to values obtained using supercritical CO2. After a typical run (holding period of 30 min, continuous flow extraction of 3 h), the results indicate that the oil recovery was optimal with a recovery of 108.74% and a phytosterol composition of 7262.80mgkg−1 at relatively low temperature of 40 ◦C, a high pressure of 400 bar and at a high supercritical fluid flow rate of 20 ml/min in the presence of 2 ml/min EtOH as entrainer. The solubility of roselle seed oil increased with temperature at the operating pressures of 200, 300 and 400 bar. Supercritical fluid extraction involved a short extraction time and the minimal usage of small amounts of entrainer in the CO2

    SPARC 2016 Salford postgraduate annual research conference book of abstracts

    Get PDF

    Segmental duplication as one of the driving forces underlying the diversity of the human immunoglobulin heavy chain variable gene region

    Get PDF
    Background: Segmental duplication and deletion were implicated for a region containing the human immunoglobulin heavy chain variable (IGHV) gene segments, 1.9III/hv3005 (possible allelic variants of IGHV3-30) and hv3019b9 (a possible allelic variant of IGHV3-33). However, very little is known about the ranges of the duplication and the polymorphic region. This is mainly because of the difficulty associated with distinguishing between allelic and paralogous sequences in the IGHV region containing extensive repetitive sequences. Inability to separate the two parental haploid genomes in the subjects is another serious barrier. To address these issues, unique DNA sequence tags evenly distributed within and flanking the duplicated region implicated by the previous studies were selected. The selected tags in single sperm from six unrelated healthy donors were amplified by multiplex PCR followed by microarray detection. In this way, individual haplotypes of different parental origins in the sperm donors could be analyzed separately and precisely. The identified polymorphic region was further analyzed at the nucleotide sequence level using sequences from the three human genomic sequence assemblies in the database. Results: A large polymorphic region was identified using the selected sequence tags. Four of the 12 haplotypes were shown to contain consecutively undetectable tags spanning in a variable range. Detailed analysis of sequences from the genomic sequence assemblies revealed two large duplicate sequence blocks of 24,696 bp and 24,387 bp, respectively, and an incomplete copy of 961 bp in this region. It contains up to 13 IGHV gene segments depending on haplotypes. A polymorphic region was found to be located within the duplicated blocks. The variants of this polymorphism unusually diverged at the nucleotide sequence level and in IGHV gene segment number, composition and organization, indicating a limited selection pressure in general. However, the divergence level within the gene segments is significantly different from that in the intergenic regions indicating that these regions may have been subject to different selection pressures and that the IGHV gene segments in this region are functionally important. Conclusions: Non-reciprocal genetic rearrangements associated with large duplicate sequence blocks could substantially contribute to the IGHV region diversity. Since the resulting polymorphisms may affect the number, composition and organization of the gene segments in this region, it may have significant impact on the function of the IGHV gene segment repertoire, antibody diversity, and therefore, the immune system. Because one of the gene segments, 3-30 (1.9III), is associated with autoimmune diseases, it could be of diagnostic significance to learn about the variants in the haplotypes by using the multiplex haplotype analysis system used in the present study with DNA sequence tags specific for the variants of all gene segments in this regio

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Reinforcement of flaxseed mucilage-based edible film with nanocrystalline cellulose

    No full text
    Flaxseed mucilage-based edible film plasticized with glycerol was previously prepared, with relatively low strength and stiffness which limits its application as food packaging material. With the aim to reinforce the mechanical properties, nanocrystalline cellulose (NCC) was added into the film in the present study. 1 wt.% to 5 wt.% of nanocrystalline cellulose suspension (NCC1 to NCC5) were prepared and added into the optimized formulation of flaxseed mucilage with 1 wt.% of glycerol (FMG). The nanocomposite films were formed via solution casting. They were studied in terms of mechanical, morphological, physical and antioxidant properties. As the NCC suspension increased, the tensile strength and Youn ’s modulus (or stiffness) significantly increased (to 2.3 MPa and 0.32 MPa) whereas the elongation at break decreased (to 40.3%) (p . ). While FMG itself had low antioxidant (at 9.13% of free radical scavenging activity and 13.8 mg gallic acid equivalent (GAE)), the addition of NCC did not significantly affect these antioxidant activities (p>0.05)
    corecore