117 research outputs found

    Evidence for Paternal Leakage in Hybrid Periodical Cicadas (Hemiptera: Magicicada spp.)

    Get PDF
    Mitochondrial inheritance is generally assumed to be maternal. However, there is increasing evidence of exceptions to this rule, especially in hybrid crosses. In these cases, mitochondria are also inherited paternally, so “paternal leakage” of mitochondria occurs. It is important to understand these exceptions better, since they potentially complicate or invalidate studies that make use of mitochondrial markers. We surveyed F1 offspring of experimental hybrid crosses of the 17-year periodical cicadas Magicicada septendecim, M. septendecula, and M. cassini for the presence of paternal mitochondrial markers at various times during development (1-day eggs; 3-, 6-, 9-week eggs; 16-month old 1st and 2nd instar nymphs). We found evidence of paternal leakage in both reciprocal hybrid crosses in all of these samples. The relative difficulty of detecting paternal mtDNA in the youngest eggs and ease of detecting leakage in older eggs and in nymphs suggests that paternal mitochondria proliferate as the eggs develop. Our data support recent theoretical predictions that paternal leakage may be more common than previously estimated

    Evolution of reproductive development in the volvocine algae

    Get PDF
    The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male–female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ–soma division of labor and male–female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed

    Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda

    Full text link
    The evolution and recombination of chloroplast genome structure in the fern genus Osmunda were studied by comparative restriction site mapping and filter hybridization of chloroplast DNAs (cpDNAs) from three species — 0. cinnamomea, 0. claytoniana and 0. regalis . The three 144 kb circular genomes were found to be colinear in organization, indicating that no major inversions or transpositions had occurred during the approximately 70 million years since their radiation from a common ancestor. Although overall size and sequence arrangement are highly conserved in the three genomes, they differ by an extensive series of small deletions and insertions, ranging in size from 50 bp to 350 by and scattered more or less at random throughout the circular chromosomes. All three chloroplast genomes contain a large inverted repeat of approximately 10 kb in size. However, hybridizations using cloned fragments from the 0. cinnamomea and 0. regalis genomes revealed the absence of any dispersed repeats in at least 50% of the genome. Analysis with restriction enzymes that fail to cleave the 10 kb inverted repeat indicated that each of the three fern chloroplast genomes exists as an equimolar population of two isomeric circles differing only in the relative orientation of their two single copy regions. These two inversion isomers are inferred to result from high frequency intramolecular recombination between paired inverted repeat segments. In all aspects of their general organization, recombinational heterogeneity, and extent of structural rearrangement and length mutation, these fern chloroplast genomes resemble very closely the chloroplast genomes of most angiosperms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46956/1/294_2004_Article_BF00418530.pd

    Conservation of chloroplast genome structure among vascular plants

    Full text link
    We have constructed the first physical map of a gymnosperm chloroplast genome and compared its organization with those of a fern and several angiosperms by heterologous filter hybridization. The chloroplast genome of the gymnosperm Ginkgo biloba consists of a 158 kb circular chromosome that contains a ribosomal RNA-encoding inverted repeat approximately 17 kb in size. Gene mapping experiments demonstrate a remarkable similarity in the linear order and absolute positions of the ribosomal RNA genes and of 17 protein genes in the cpDNAs of Ginkgo biloba , the fern Osmunda cinnamomea and the angiosperm Spinacia oleracea . Moreover, filter hybridizations using as probes cloned fragments that cover the entirety of the angiosperm chloroplast genome reveal a virtually colinear arrangement of homologous sequence elements in these genomes representing three divisions of vascular plants that diverged some 200–400 million years ago. The only major difference in chloroplast genome structure among these vascular plants involves the size of the rRNA-encoding inverted repeat, which is only 10 kb in Osmunda , 17 kb in Ginkgo , and about 25 kb in most angiosperms. This size variation appears to be the result of spreading of the repeat through previously single copy sequences, or the reverse process of shrinkage, unaccompanied by any overall change in genome complexity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46955/1/294_2004_Article_BF00418529.pd

    Chloroplast DNA from lettuce and Barnadesia (Asteraceae): structure, gene localization, and characterization of a large inversion

    Full text link
    We have cloned into plasmids 17 of 18 lettuce chloroplast DNA SacI fragments covering 96% of the genome. The cloned fragments were used to construct cleavage maps for 10 restriction enzymes for the chloroplast genomes of lettuce ( Lactuca sativa ) and Barnadesia caryophylla , two distantly related species in the sunflower family (Asteraceae). Both genomes are approximately 151 kb in size and contain a 25 kb inverted repeat. We also mapped the position and orientation of 37 chloroplast DNA genes. The mapping studies reveal that chloroplast DNAs of lettuce and Barnadesia differ by a 22 kb inversion in the large single copy region. Barnadesia has retained the primitive land plant genome arrangement, while the inversion has occurred in a lettuce lineage. The endpoints of the derived lettuce inversion were located by comparison to the well-characterized spinach and tobacco genomes. Both endpoints are located in intergenic spacers within tRNA gene clusters; one cluster being located downstream from the atpA gene and the other upstream from the psbD gene. The endpoint near the atpA gene is very close to one endpoint of a 20 kb inversion in wheat (Howe et al. 1983; Quigley and Weil 1985). Comparison of the restriction site maps gives an estimated sequence divergence of 3.7% for the lettuce and Barnadesia genomes. This value is relatively low compared to previous estimates for other angiosperm groups, suggesting a high degree of sequence conservation in the Asteraceae.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46961/1/294_2004_Article_BF00384619.pd

    Tests of two models for the transmission of the Mu mutator in maize

    No full text
    corecore