10 research outputs found

    Carbon cryogel as support of platinum nano-sized electrocatalyst for the hydrogen oxidation reaction

    No full text
    The kinetics of hydrogen oxidation reaction was studied in perchloric acid solution on carbon-supported Pt nanoparticles using the rotating disk electrode technique. Carbon cryogel and commercial carbon black. Vulcan XC-72 were used as catalyst supports. Pt/C catalysts were prepared by a modified polyol synthesis method in an ethylene glycol (EG) solution. Considerable effect has been observed for the specific surface area of carbon support on the fundamental properties of Pt/C catalyst, such as catalyst particle size distribution and dispersion as well as catalytic activity for the oxidation of hydrogen. X-ray diffraction (XRD) and transmission electron microscopy (TEM) images show that the particle size of the catalyst decreases with the increase of specific surface area of carbon support. Cyclic voltammetry (CV) was used for determination of the actual exposed surface area of catalyst particles. It was found that Pt catalyst prepared by using the novel carbon material displayed better hydrogen electrochemical oxidation activity than the catalyst prepared by using Vulcan XC-72. (c) 2005 Published by Elsevier Ltd

    High surface area Pd nanocatalyst on core-shell tungsten based support as a beneficial catalyst for low temperature fuel cells application

    No full text
    Tungsten based support was prepared by polycondensation of resorcinol and formaldehyde from ammonium metatungstate, in the presence cetyltrimethylammonium bromide (CTABr) surfactant. Pd nanocatalyst on this support was synthesized by borohydride reduction method. The obtained materials were characterized by High Resolution Transmission Electron Microscopy (HRTEM), Electron Energy Loss Spectroscopy (EELS), X-ray Photoelectron Spectroscopy (XPS) and electrochemical measurements. TEM analysis revealed Pd nanoparticles size in the range of a few nanometers, even the clusters of single Pd atoms. X-Ray Photoelectron Spectroscopy was applied to determine surface composition of the substrates. It was found that tungsten based support consisted of W, WC and WO3 species. The presence of metallic palladium – Pd(0) in the Pd/W@WCWO3 catalyst was revealed, as well. The catalytic activity and stability for the oxygen reduction were investigated in acid and alkaline solutions, by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. The catalystsʹ activities were compared to the carbon supported Pd nanoparticles (Vulcan XC 72). WC supported Pd nanoparticles have shown high activity and superior stability, comparable even to Pt based catalysts, especially in alkaline electrolytes

    Anticorrosive coatings: a review

    No full text
    corecore