9,087 research outputs found

    Temperature dependence of the coercive field in single-domain particle systems

    Full text link
    The magnetic properties of Cu97Co3 and Cu90Co10 granular alloys were measured over a wide temperature range (2 to 300K). The measurements show an unusual temperature dependence of the coercive field. A generalized model is proposed and explains well the experimental behavior over a wide temperature range. The coexistence of blocked and unblocked particles for a given temperature rises difficulties that are solved here by introducing a temperature dependent blocking temperature. An empirical factor gamma arise from the model and is directly related to the particle interactions. The proposed generalized model describes well the experimental results and can be applied to other single-domain particle system.Comment: 7 pages, 8 figures, revised version, accepted to Physical Review B on 29/04/200

    Runoff at the micro-plot and slope scale following wildfire, central Portugal

    Get PDF
    Through their effects on soil properties and vegetation/litter cover, wildfires can strongly enhance overland flow generation and accelerate soil erosion [1] and, thereby, negatively affect land-use sustainability as well as downstream aquatic and flood zones. Wildfires are a common phenomenon in present-day Portugal, devastating in an average year some 100.000 ha of forest and woodlands and in an exceptional year like 2003 over 400.000 ha. There therefore exists a clear need in Portugal for a tool that can provide guidance to post-fire land management by predicting soil erosion risk, on the one hand, and, on the other, the mitigation effectiveness of soil conservation measures. Such a tool has recently been developed for the Western U.S.A. [3: ERMiT] but its suitability for Portuguese forests will need to be corroborated by field observations. Testing the suitability of existing erosion models in recently burned forest areas in Portugal is, in a nutshell, the aim of the EROSFIRE projects. In the first EROSFIRE project the emphasis was on the prediction of erosion at the scale of individual hill slopes. In the ongoing EROSFIRE-II project the spatial scope is extended to include the catchment scale, so that also the connectivity between hill slopes as well as channel and road processes are being addressed. Besides ERMiT, the principal models under evaluation for slope-scale erosion prediction are: (i) the variant of USLE [4] applied by the Portuguese Water Institute after the wildfires of 2003; (ii) the Morgan–Morgan–Finney model (MMF) [5]; (iii) MEFIDIS [6]. From these models, MEFIDIS and perhaps MMF will, after successful calibration at the slope scale, also be applied for predicting catchment-scale sediment yields of extreme events

    Runoff and erosion at the micro-plot and slope scale in a small burnt catchment, central Portugal

    Get PDF
    Wildfires can have important impacts on hydrological processes and soil erosion in forest catchments, due to the destruction of vegetation cover and changes to soil properties. However, the processes involved are non-linear and not fully understood. This has severely limited the understanding on the impacts of wildfires, especially in the up-scaling from hillslopes to catchments; in consequence, current models are poorly adapted for burnt forest conditions. The objective of this presentation is to give an overview of the hydrological response and sediment yield from the micro-plot to slope scale, in the first year following a wildfire (2008/2009) that burnt an entire catchment nearby the Colmeal village, central Portugal. The overview will focus on three slopes inside the catchment, with samples including: • Runoff at micro-plot scale (12 bounded plots) and slope scale (12 open plots); • Sediments and Organic Matter loss at micro-plot scale (12 bounded plots) and slope scale (12 open plots plus 3 Sediment fences); • Rainfall and Soil moisture data; • Soil Water Repellency and Ground Cover data. The analysis of the first year following the wildfire clearly shows the complexity of runoff generation and the associated sediment transport in recently burnt areas, with pronounced differences between hillslopes and across spatial scales as well as with marked variations through time. This work was performed in the framework of the EROSFIRE-II project (PTDC/AGR-CFL/70968/2006) which has as overall aim to predict soil erosion risk in recently burnt forest areas, including common post-fire forest management practices; the project focuses on the simultaneous measurement of runoff and soil erosion at multiple spatial scales.The results to be presented in this session are expected to show how sediment is generated, transported and exported in the Colmeal watershed; and contribute to understand and simulate erosion processes in burnt catchments, including for model development and evaluation

    Hydrological and erosion response at micro-plot to -catchment scale following forest wildfire, north-central Portugal

    Get PDF
    Wildfires can have important impacts on hydrological and soil erosion processes, due to the destruction of vegetation cover and changes to soil properties. According to Shakesby and Doerr (2006), these wildfire effects are: i) much better known at small spatial scales (especially erosion plots) than at the scale of catchments; ii) much better studied with respect to overland flow and streamflow (and, then, especially peak discharges) than to soil erosion. Following up on a precursor project studying runoff generation and the associated soil losses from micro-plot to slope-scale in Portuguese eucalypt forests, the EROSFIRE-II project addresses the connectivity of these processes across hillslopes as well as within the channel network. This is done in the Colmeal study area in central Portugal, where the outlet of an entirely burnt catchment of roughly 10 ha was instrumented with a gauging station continuously recording water level and tubidity, and five slopes were each equipped with 4 runoff plots of < 0,5 m2 (“micro-plot”) and 4 slope-scale plots as well as 1 slope-scale sediment fence. Starting one month after the August 2008 wildfire, the plots were monitored at 1- to 2-weekly intervals, depending on the occurrence of rainfall. The gauging station became operational at the end of November 2008, since the in-situ construction of an H-flume required several weeks. A preliminary analysis of the data collected till the end of 2008, focusing on two slopes with contrasting slope lengths as well as the gauging station: revealed clear differences in runoff and erosion between: (i) the micro-plot and slope-scale plots on the same hillslope; (ii) the two slopes; (iii) an initial dry period and a subsequent much wetter period; (iv) the slopes and the catchment-scale, also depending on the sampling period. These results suggest that the different processes govern the hydrological and erosion response at different spatial scales as well as for different periods, with soil water repellency playing a role during the initial post-fire period. The current presentation will review these preliminary results based on the data collected during the first year after the wildfire

    One-nucleon transfer reactions and the optical potential

    Full text link
    We provide a summary of new developments in the area of direct reaction theory with a particular focus on one-nucleon transfer reactions. We provide a status of the methods available for describing (d,p) reactions. We discuss the effects of nonlocality in the optical potential in transfer reactions. The results of a purely phenomenological potential and the optical potential obtained from the dispersive optical model are compared; both point toward the importance of including nonlocality in transfer reactions explicitly. Given the large ambiguities associated with optical potentials, we discuss some new developments toward the quantification of this uncertainty. We conclude with some general comments and a brief account of new advances that are in the pipeline.Comment: 7 pages, 5 figures, proceedings for the 14th International Conference on Nuclear Reaction Mechanisms, Varenna, June 201

    Module identification in bipartite and directed networks

    Full text link
    Modularity is one of the most prominent properties of real-world complex networks. Here, we address the issue of module identification in two important classes of networks: bipartite networks and directed unipartite networks. Nodes in bipartite networks are divided into two non-overlapping sets, and the links must have one end node from each set. Directed unipartite networks only have one type of nodes, but links have an origin and an end. We show that directed unipartite networks can be conviniently represented as bipartite networks for module identification purposes. We report a novel approach especially suited for module detection in bipartite networks, and define a set of random networks that enable us to validate the new approach

    Stability of undissociated screw dislocations in zinc-blende covalent materials from first principle simulations

    Full text link
    The properties of perfect screw dislocations have been investigated for several zinc-blende materials such as diamond, Si, β\beta-SiC, Ge and GaAs, by performing first principles calculations. For almost all elements, a core configuration belonging to shuffle set planes is favored, in agreement with low temperature experiments. Only for diamond, a glide configuration has the lowest defect energy, thanks to an sp2^2 hybridization in the core

    Comment on: Kinetic Roughening in Slow Combustion of Paper

    Full text link
    We comment on a recent Letter by Maunuksela et al. [Phys. Rev. Lett. 79, 1515 (1997)].Comment: 1 page, 1 figure, http://polymer.bu.edu/~hmakse/Home.htm

    Phase lag in epidemics on a network of cities

    Full text link
    We study the synchronisation and phase-lag of fluctuations in the number of infected individuals in a network of cities between which individuals commute. The frequency and amplitude of these oscillations is known to be very well captured by the van Kampen system-size expansion, and we use this approximation to compute the complex coherence function that describes their correlation. We find that, if the infection rate differs from city to city and the coupling between them is not too strong, these oscillations are synchronised with a well defined phase lag between cities. The analytic description of the effect is shown to be in good agreement with the results of stochastic simulations for realistic population sizes.Comment: 10 pages, 6 figure

    Slave boson model for two-dimensional trapped Bose-Einstein condensate

    Full text link
    A system of N bosons in a two-dimensional harmonic trap is considered. The system is treated in term of the slave boson representation for hard-core bosons which is valid in the arbitrary density regimes. I discuss the consequences of higher order interactions on the density profiles by mapping the slave boson equation to the known Kohn-Sham type equation within the density functional scheme.Comment: 12 pages, 3 figures. Submitted to J. Phys. B : At. mol. opt. phy
    • …
    corecore