45 research outputs found

    Burden of postinfectious symptoms after acute Dengue, Vietnam.

    Get PDF
    We assessed predominantly pediatric patients in Vietnam with dengue and other febrile illness 3 months after acute illness. Among dengue patients, 47% reported >1 postacute symptom. Most resolved by 3 months, but alopecia and vision problems often persisted. Our findings provide additional evidence on postacute dengue burden and confirm children are affected

    The application of sample pooling for mass screening of SARS-CoV-2 in an outbreak of COVID-19 in Vietnam

    No full text
    We sampled nasal–pharyngeal throat swabs from 96,123 asymptomatic individuals at risk of SARS-CoV-2 infection, and generated 22,290 pools at collection, each containing samples from two to seven individuals. We detected SARS-CoV-2 in 24 pools, and confirmed the infection in 32 individuals after resampling and testing of 104 samples from positive pools. We completed the testing within 14 days. We would have required 64 days to complete the screening for the same number of individuals if we had based our testing strategy on individual testing. There was no difference in cycle threshold (Ct) values of pooled and individual samples. Thus, compared with individual sample testing, our approach did not compromise PCR sensitivity, but saved 77% of the resources. The present strategy might be applicable in settings, where there are shortages of reagents and the disease prevalence is low, but the demand for testing is high

    The aetiologies of central nervous system infections in hospitalised Cambodian children

    No full text
    Background Central nervous system (CNS) infections are an important cause of childhood morbidity and mortality. The aetiologies of these potentially vaccine-preventable infections have not been well established in Cambodia. Methods We did a one year prospective study of children hospitalised with suspected CNS infection at Angkor Hospital for Children, Siem Reap. Cerebrospinal fluid specimens (CSF) samples underwent culture, multiplex PCR and serological analysis to identify a range of bacterial and viral pathogens. Viral metagenomics was performed on a subset of pathogen negative specimens. Results Between 1st October 2014 and 30th September 2015, 284 analysable patients were enrolled. The median patient age was 2.6 years; 62.0% were aged <5 years. CSF white blood cell count was ≥10 cells/μL in 116/272 (42.6%) cases. CNS infection was microbiologically confirmed in 55 children (19.3%). Enteroviruses (21/55), Japanese encephalitis virus (17/55), and Streptococcus pneumoniae (7/55) accounted for 45 (81.8%) of all pathogens identified. Of the pathogens detected, 74.5% (41/55) were viruses and 23.6% (13/55) were bacteria. The majority of patients were treated with ceftriaxone empirically. The case fatality rate was 2.5%. Conclusions Enteroviruses, JEV and S. pneumoniae are the most frequently detected causes of CNS infection in hospitalised Cambodian children

    Central nervous system infection diagnosis by next-generation sequencing: a glimpse into the future?

    No full text
    Japanese encephalitis virus was detected by deep sequencing for the first time in urine of a 16-year-old boy with encephalitis. Seroconversion and polymerase chain reaction analysis confirmed the metagenomics finding. Urine is useful for diagnosis of flaviviral encephalitis, whereas deep sequencing can be a panpathogen assay for the diagnosis of life-threatening infectious diseases

    The aetiologies of central nervous system infections in hospitalised Cambodian children

    No full text
    Background Central nervous system (CNS) infections are an important cause of childhood morbidity and mortality. The aetiologies of these potentially vaccine-preventable infections have not been well established in Cambodia. Methods We did a one year prospective study of children hospitalised with suspected CNS infection at Angkor Hospital for Children, Siem Reap. Cerebrospinal fluid specimens (CSF) samples underwent culture, multiplex PCR and serological analysis to identify a range of bacterial and viral pathogens. Viral metagenomics was performed on a subset of pathogen negative specimens. Results Between 1st October 2014 and 30th September 2015, 284 analysable patients were enrolled. The median patient age was 2.6 years; 62.0% were aged <5 years. CSF white blood cell count was ≥10 cells/μL in 116/272 (42.6%) cases. CNS infection was microbiologically confirmed in 55 children (19.3%). Enteroviruses (21/55), Japanese encephalitis virus (17/55), and Streptococcus pneumoniae (7/55) accounted for 45 (81.8%) of all pathogens identified. Of the pathogens detected, 74.5% (41/55) were viruses and 23.6% (13/55) were bacteria. The majority of patients were treated with ceftriaxone empirically. The case fatality rate was 2.5%. Conclusions Enteroviruses, JEV and S. pneumoniae are the most frequently detected causes of CNS infection in hospitalised Cambodian children

    Central nervous system infection diagnosis by next-generation sequencing: a glimpse into the future?

    No full text
    Japanese encephalitis virus was detected by deep sequencing for the first time in urine of a 16-year-old boy with encephalitis. Seroconversion and polymerase chain reaction analysis confirmed the metagenomics finding. Urine is useful for diagnosis of flaviviral encephalitis, whereas deep sequencing can be a panpathogen assay for the diagnosis of life-threatening infectious diseases

    Neutralizing antibodies against enteroviruses in patients with hand, foot and mouth disease

    No full text
    Hand, foot and mouth disease (HFMD) is an emerging infection with pandemic potential. Knowledge of neutralizing antibody responses among its pathogens is essential to inform vaccine development and epidemiologic research. We used 120 paired-plasma samples collected at enrollment and >7 days after the onset of illness from HFMD patients infected with enterovirus A71 (EV-A71), coxsackievirus A (CVA) 6, CVA10, and CVA16 to study cross neutralization. For homotypic viruses, seropositivity increased from <60% at enrollment to 97%–100% at follow-up, corresponding to seroconversion rates of 57%–93%. Seroconversion for heterotypic viruses was recorded in only 3%–23% of patients. All plasma samples from patients infected with EV-A71 subgenogroup B5 could neutralize the emerging EV-A71 subgenogroup C4. Collectively, our results support previous reports about the potential benefit of EV-A71 vaccine but highlight the necessity of multivalent vaccines to control HFMD

    Performance of metagenomic next-generation sequencing for the diagnosis of viral meningoencephalitis in a resource-limited setting

    No full text
    Background Meningoencephalitis is a devastating disease worldwide. Current diagnosis fails to establish the cause in ≥50% of patients. Metagenomic next-generation sequencing (mNGS) has emerged as pan-pathogen assays for infectious diseases diagnosis, but few studies have been conducted in resource-limited settings. Methods We assessed the performance of mNGS in the cerebrospinal fluid (CSF) of 66 consecutively treated adults with meningoencephalitis in a tertiary referral hospital for infectious diseases in Vietnam, a resource-limited setting. All mNGS results were confirmed by viral-specific polymerase chain reaction (PCR). As a complementary analysis, 6 viral PCR-positive samples were analyzed using MinION-based metagenomics. Results Routine diagnosis could identify a virus in 15 (22.7%) patients, including herpes simplex virus (HSV; n = 7) and varicella zoster virus (VZV; n = 1) by PCR, and mumps virus (n = 4), dengue virus (DENV; n = 2), and Japanese encephalitis virus (JEV; n = 1) by serological diagnosis. mNGS detected HSV, VZV, and mumps virus in 5/7, 1/1, and 1/4 of the CSF positive by routine assays, respectively, but it detected DENV and JEV in none of the positive CSF. Additionally, mNGS detected enteroviruses in 7 patients of unknown cause. Metagenomic MinION-Nanopore sequencing could detect a virus in 5/6 PCR-positive CSF samples, including HSV in 1 CSF sample that was negative by mNGS, suggesting that the sensitivity of MinION is comparable with that of mNGS/PCR. Conclusions In a single assay, metagenomics could accurately detect a wide spectrum of neurotropic viruses in the CSF of meningoencephalitis patients. Further studies are needed to determine the value that real-time sequencing may contribute to the diagnosis and management of meningoencephalitis patients, especially in resource-limited settings where pathogen-specific assays are limited in number
    corecore