76 research outputs found

    Dihydrogen: Vs. hydrogen bonding in the solvation of ammonia borane by tetrahydrofuran and liquid ammonia

    Get PDF
    The solvation structures of two systems rich in hydrogen and dihydrogen bonding interactions have been studied in detail experimentally through neutron diffraction with hydrogen/deuterium isotopic substitution. The results were analysed by an atomistic Monte Carlo simulation employing refinement to the experimental scattering data. The systems studied were the hydrogen storage material ammonia borane (NH 3 BH 3 , AB) dissolved in tetrahydrofuran (THF), and liquid ammonia (NH 3 ), the latter in which AB shows unusually high solubility (260 g AB per 100 g NH 3 ) and potential regeneration properties. The full orientational and positional manner in which AB-AB, AB-THF and AB-NH 3 pairs interact with each other were successfully deciphered from the wide Q-range total neutro n scattering data. This provided an unprecedented level of detail into such highly (di)hydrogen bonding solute-solvent interactions. In particular this allowed insight into the way in which H-B acts as a hydrogen bond acceptor. The (di)hydrogen bonding was naturally determined to dictate the intermolecular interactions, at times negating the otherwise expected tendency for polar molecules to align themselves with anti-parallel dipole moments. Several causes for the extreme solubility of AB in ammonia were determined, including the ability of ammonia to (di)hydrogen bond to both ends of the AB molecule and the small size of the ammonia molecule relative to AB and THF. The AB B-H to ammonia H dihydrogen bond was found to dominate the intermolecular interactions, occurring almost three times more often than any other hydrogen or dihydrogen bond in the system. The favourability of this interaction was seen on the bulk scale by a large decrease in AB clustering in ammonia compared to in the dihydrogen bond-less THF

    Intermediate Range Order in Metal-Ammonia Solutions: Pure and Na-Doped Ca-NH_{3}

    Get PDF
    The local and intermediate range ordering in Ca–NH3 solutions in their metallic phase is determined through H/D isotopically differenced neutron diffraction in combination with empirical potential structure refinements. For both low and high relative Ca concentrations, the Ca ions are found to be octahedrally coordinated by the NH3 solvent, and these hexammine units are spatially correlated out to lengthscales of ∼7.4–10.3 Å depending on the concentration, leading to pronounced ordering in the bulk liquid. We further demonstrate that this liquid order can be progressively disrupted by the substitution of Ca for Na, whereby a distortion of the average ion primary solvation occurs and the intermediate range ion–ion correlations are disrupted

    Switchable changes in the conductance of single-walled carbon nanotube networks on exposure to water vapour

    Get PDF
    We have discovered that wrapping single-walled carbon nanotubes (SWCNTs) with ionic surfactants induces a switch in the conductance-humidity behaviour of SWCNT networks. Residual cationic vs. anionic surfactant induces a respective increase or decrease in the measured conductance across the SWCNT networks when exposed to water vapour. The magnitude of this effect was found to be dependent on the thickness of the deposited SWCNT films. Previously, chemical sensors, field effect transistors (FETs) and transparent conductive films (TCFs) have been fabricated from aqueous dispersions of surfactant functionalised SWCNTs. The results reported here confirm that the electrical properties of such components, based on randomly orientated SWCNT networks, can be significantly altered by the presence of surfactant in the SWCNT layer. A mechanism for the observed behaviour is proposed based on electrical measurements, Raman and UV-Vis-NIR spectroscopy. Additionally, the potential for manipulating the sensitivity of the surfactant functionalised SWCNTs to water vapour for atmospheric humidity sensing was evaluated. The study also presents a simple method to establish the effectiveness of surfactant removal techniques, and highlights the importance of characterising the electrical properties of SWCNT-based devices in both dry and humid operating environments for practical applications

    A novel ammonium pentaborate – poly(ethylene-glycol) templated polymer-inclusion compound

    Get PDF
    A new hydrogen-bonded supramolecular framework is reported, consisting of ammonium pentaborate, containing poly(ethylene-glycol) chains extending down tubular cavities in the structure. The crystal architecture is templated by the presence of the polyether chains, analogous to template synthesis of zeolites and metal organic frameworks. The ammonium pentaborate is formed by the thermolysis of ammonia borane, followed by hydrolysis of the dehydrogenation products by ambient water. This structure represents the first known example of a borate-based polymer inclusion compound

    Crystalline structure of an ammonia borane-polyethylene oxide cocrystal: a material investigated for its hydrogen storage potential

    Get PDF
    The crystalline structure of a cocrystal comprising ammonia borane (AB) and a short-chain polyethylene oxide (PEO or PEG) has been determined by single-crystal X-ray diffraction. The components interact via hydrogen bonds between each of the hydrogen atoms at the NH3 end of the AB molecules and alternate oxygen atoms along the PEO backbone. The PEO chains in the structure exhibit an unusual conformation where their curvature reverses every 5 monomers, such that the polymer snakes through the crystal. This is the first time that an AB composite material has been determined to be a cocrystal, and no structure determination of a cocrystal to confine AB has been reported before

    High-Performance Zinc–Air Batteries with Scalable Metal–Organic Frameworks and Platinum Carbon Black Bifunctional Catalysts

    Get PDF
    Metal-organic framework (MOF)-related derivatives have generated significant interest in numerous energy conversion and storage applications, such as adsorption, catalysis, and batteries. However, such materials' real-world applicability is hindered because of scalability and reproducibility issues as they are produced by multistep postsynthesis modification of MOFs, often with high-temperature carbonization and/or calcination. In this process, MOFs act as self-sacrificial templates to develop functional materials at the expense of severe mass loss, and the resultant materials exhibit complex process-performance relationships. In this work, we report the direct applicability of a readily synthesized and commercially available MOF, a zeolitic imidazolate framework (ZIF-8), in a rechargeable zinc-air battery. The composite of cobalt-based ZIF-8 and platinum carbon black (ZIF-67@Pt/CB) prepared via facile solution mixing shows a promising bifunctional electrocatalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), the key charge and discharge mechanisms in a battery. ZIF-67@Pt/CB exhibits long OER/ORR activity durability, notably, a significantly enhanced ORR stability compared to Pt/CB, 85 versus 52%. Interestingly, a ZIF-67@Pt/CB-based battery delivers high performance with a power density of >150 mW cm-2 and long stability for 100 h of charge-discharge cyclic test runs. Such remarkable activities from as-produced ZIF-67 are attributed to the electrochemically driven in situ development of an active cobalt-(oxy)hydroxide nanophase and interfacial interaction with platinum nanoparticles. This work shows commercial feasibility of zinc-air batteries as MOF-cathode materials can be reproducibly synthesized in mass scale and applied as produced

    Swelling of compacted bentonite in organic solvents: Correlation of rate and extent of swelling with solvent properties

    Get PDF
    The swelling of clay minerals within shale formations during oil and gas exploration, and within compacted bentonite barriers for radioactive waste containment, presents a number of challenges to operators. Whilst much work has been devoted to understanding the interlayer swelling properties of clay mineral crystals, significantly less has been devoted to understanding coupled pore and interlayer swelling in reactive shale/compacted clay minerals. Here we study the swelling of compacted clay mineral tablets on exposure to a range of organic solvents, selected so that the effect of key solvent properties such as dielectric constant, density, octanol-water partition coefficient, viscosity and surface tension can be correlated with the swelling observed. We use a novel non-contact swelling meter to carry out the swelling tests, allowing us to access information on rate of swelling. Short-term swelling rate showed the strongest correlation to the solvent octanol-water partition coefficient. In long term swelling, good correlation was found between total linear swelling and viscosity, and the octanol-water partition coefficient

    Local structure and polar order in liquid N-Methyl-2-pyrrolidone (NMP)

    Get PDF
    N-Methyl-2-pyrrolidone (NMP) is an exceptional solvent, widely used in industry and for nanomaterials processing. Yet despite its ubiquity, its liquid structure, which ultimately dictates its solvation properties, is not fully known. Here, neutron scattering is used to determine NMP’s structure in unprecedented detail. Two dominant nearest-neighbor arrangements are found, where rings are parallel or perpendicular. However, compared with related solvents, NMP has a relatively large population of parallel approaches, similar only to benzene, despite its nonaromaticity and the presence of the normally structure-reducing methyl group. This arrangement is underpinned by NMP’s dipole moment, which has a profound effect on its structure: nearest-neighbor molecules arrange in an antiparallel but offset fashion. This polar-induced order extends beyond the first solvation shell, resulting in ordered trimers that reach the nanometer range. The degree of order and balance of interactions rationalize NMP’s high boiling point and versatile capabilities to solvate both charged and uncharged species

    An investigation into the colloidal stability of graphene oxide nano-layers in alite paste

    Get PDF
    Recent studies have reported that graphene oxide (GO) is capable of enhancing the mechanical properties of hardened Portland cement (PC) pastes. The mechanisms proposed so far to explain this strengthening generally assume that GO is well dispersed in the pore solution of PC paste, serving as a reinforcing agent or nucleation-growth site during hydration. This paper investigates (i) the effect of GO on the hydration of alite, the main constituent of PC cement, using isothermal calorimetry and boundary nucleation-growth modelling, and (ii) the factors controlling the colloidal stability of GO in alite paste environment. Results indicate that GO accelerates the hydration of alite only marginally, and that GO is susceptible to aggregation in alite paste. This instability is due to (i) a pH-dependent interaction between GO and calcium cations in the pore solution of alite paste, and (ii) a significant reduction of GO functional groups at high pH

    Design of hyperporous graphene networks and their application in solid-amine based carbon capture systems

    Get PDF
    We demonstrate a simple and fully scalable method for obtaining hierarchical hyperporous graphene networks of ultrahigh total pore volume by thermal-shock exfoliation of graphene-oxide (exfGO) at a relatively mild temperature of 300 °C. Such pore volume per unit mass has not previously been achieved in any type of porous solid. We find that the amount of oxidation of starting graphene-oxide is the key factor that determines the pore volume and surface area of the final material after thermal shock. Specifically, we emphasize that the development of the hyperporosity is directly proportional to the enhanced oxidation of sp2 C[double bond, length as m-dash]C to form C[double bond, length as m-dash]O/COO. Using our method, we reproducibly synthesized remarkable meso-/macro-porous graphene networks with exceptionally high total pore volumes, exceeding 6 cm3 g−1. This is a step change compared to ≤3 cm3 g−1 in conventional GO under similar synthetic conditions. Moreover, a record high amine impregnation of >6 g g−1 is readily attained in exfGO samples (solid-amine@exfGO), where amine loading is directly controlled by the pore-structure and volume of the host materials. Such solid-amine@exfGO samples exhibit an ultrahigh selective flue-gas CO2 capture of 30–40 wt% at 75 °C with a working capacity of ≈25 wt% and a very long cycling stability under simulated flue-gas stream conditions. To the best of our knowledge, this is the first report where a graphene-oxide based hyperporous carbon network is used to host amines for carbon capture application with exceptionally high storage capacity and stability
    • …
    corecore