22 research outputs found

    Place preference induced by nucleus accumbens amphetamine is impaired by local blockade of Group II metabotropic glutamate receptors in rats

    Get PDF
    BACKGROUND: The nucleus accumbens (NAc) plays a critical role in amphetamine-produced conditioned place preference (CPP). In previous studies, NAc basal and amphetamine-produced DA transmission was altered by Group II mGluR agents. We tested whether NAc amphetamine CPP depends on Group II mGluR transmission. RESULTS: NAc injections (0.5 μl/side) of the Group II mGluR antagonist (2 S)- a-ethylglutamic acid (EGLU: 0.01–0.8 μg but not 0.001 μg) impaired CPP. The drug did not block the acute locomotor effect of amphetamine. CONCLUSION: Results suggest that Group II mGluRs may be necessary for the establishment of NAc amphetamine-produced CPP. These receptors may also mediate other forms of reward-related learning dependent on this structure

    Phylogeography of Ostreopsis along West Pacific Coast, with Special Reference to a Novel Clade from Japan

    Get PDF
    BACKGROUND: A dinoflagellate genus Ostreopsis is known as a potential producer of Palytoxin derivatives. Palytoxin is the most potent non-proteinaceous compound reported so far. There has been a growing number of reports on palytoxin-like poisonings in southern areas of Japan; however, the distribution of Ostreopsis has not been investigated so far. Morphological plasticity of Ostreopsis makes reliable microscopic identification difficult so the employment of molecular tools was desirable. METHODS/PRINCIPAL FINDING: In total 223 clones were examined from samples mainly collected from southern areas of Japan. The D8-D10 region of the nuclear large subunit rDNA (D8-D10) was selected as a genetic marker and phylogenetic analyses were conducted. Although most of the clones were unable to be identified, there potentially 8 putative species established during this study. Among them, Ostreopsis sp. 1-5 did not belong to any known clade, and each of them formed its own clade. The dominant species was Ostreopsis sp. 1, which accounted for more than half of the clones and which was highly toxic and only distributed along the Japanese coast. Comparisons between the D8-D10 and the Internal Transcribed Spacer (ITS) region of the nuclear rDNA, which has widely been used for phylogenetic/phylogeographic studies in Ostreopsis, revealed that the D8-D10 was less variable than the ITS, making consistent and reliable phylogenetic reconstruction possible. CONCLUSIONS/SIGNIFICANCE: This study unveiled a surprisingly diverse and widespread distribution of Japanese Ostreopsis. Further study will be required to better understand the phylogeography of the genus. Our results posed the urgent need for the development of the early detection/warning systems for Ostreopsis, particularly for the widely distributed and strongly toxic Ostreopsis sp. 1. The D8-D10 marker will be suitable for these purposes

    The oxygen isotope composition of Karoo and Etendeka picrites: High δ18O mantle or crustal contamination?

    No full text
    Olivine and orthopyroxene phenocrysts from picrite and picrate basalt lavas and dykes (Mg# 64-80) from the Tuli and Mwanezi (Nuanetsi) regions of the ~180 Ma Karoo Large Igneous province (LIP) have δ18O values that range from 6.0 to 6.7 ‰ (Fig. 1), suggesting that they crystallized from magmas having δ18O values about 1 to 1.5 ‰ higher than expected in an entirely mantle-derived magma. Olivines from picrite and picrite basalt dykes from the 135 Ma Etendeka LIP of Namibia and Karoo-age picrite dykes from Dronning Maud Land, Antarctica do not have such elevated δ18O values. The Etendeka picrites show good correlations between δ18O value and Sr-, Nd- and Pb-isotope ratios that are consistent with previously proposed models of crustal contamination (e.g. Thompson et al., 2007). Explanations for the high δ18O values in Tuli/Mwenezi picrites are limited to (i) alteration, (ii) crustal contamination, and (iii) derivation from mantle with an abnormally high δ18O. The lack of variation in olivine and orthopyroxene δ18O values, together with the lack of correlation between mineral and whole-rock δ18O values are not consistent with alteration being the cause of high δ18O values. The high δ18O values in selected olivine cores have been confirmed by SIMS, and aggressive cleaning of crystals with HF makes no difference to the δ18O value obtained. Average εNd and εSr values of -8 and +16, and high concentrations of incompatible elements such as K are typical of picrites from the Mwanezi (Nuanetsi) region, which have been explained by a variety of models that range from crustal contamination to derivation from the ‘enriched’ mantle lithosphere. The primitive character of the magmas combined with the lack of correlation between δ18O values and radiogenic isotope composition and MgO content or Mg# are inconsistent with crustal contamination, and lend weight to arguments in favour of an 18O-enriched mantle source having high incompatible trace element concentration and enriched radiogenic isotope composition. Although elevated initial Sr isotope ratios, εNd values of -8, and δ18O values about 1 ‰ higher than expected for mantle-derived magma are also a feature of the Bushveld mafic and ultramafic magmas, it is unlikely that a long-lived 18O-enriched mantle source would have survived for nearly 2 Ga. Incorporation of crustal material into the mantle by subduction or delamination of the lower crust are the most likely mechanisms for enriching the mantle in 18O
    corecore