52 research outputs found

    Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and β-adrenoceptors

    Get PDF
    The normal physiological contraction of the urinary bladder, which is required for voiding, is predominantly mediated by muscarinic receptors, primarily the M3 subtype, with the M2 subtype providing a secondary backup role. Bladder relaxation, which is required for urine storage, is mediated by β-adrenoceptors, in most species involving a strong β3-component. An excessive stimulation of contraction or a reduced relaxation of the detrusor smooth muscle during the storage phase of the micturition cycle may contribute to bladder dysfunction known as the overactive bladder. Therefore, interference with the signal transduction of these receptors may be a viable approach to develop drugs for the treatment of overactive bladder. The prototypical signaling pathway of M3 receptors is activation of phospholipase C (PLC), and this pathway is also activated in the bladder. Nevertheless, PLC apparently contributes only in a very minor way to bladder contraction. Rather, muscarinic-receptor-mediated bladder contraction involves voltage-operated Ca2+ channels and Rho kinase. The prototypical signaling pathway of β-adrenoceptors is an activation of adenylyl cyclase with the subsequent formation of cAMP. Nevertheless, cAMP apparently contributes in a minor way only to β-adrenoceptor-mediated bladder relaxation. BKCa channels may play a greater role in β-adrenoceptor-mediated bladder relaxation. We conclude that apart from muscarinic receptor antagonists and β-adrenoceptor agonists, inhibitors of Rho kinase and activators of BKCa channels may have potential to treat an overactive bladder

    Anxiety symptoms, cerebral amyloid burden and memory decline in healthy older adults without dementia: 3-year prospective cohort study

    Get PDF
    Although beta-amyloid, anxiety and depression have linked cross-sectionally to reduced memory function in healthy older adults without dementia, prospective data evaluating these associations are lacking. Using data an observational cohort study of 178 healthy older adults without dementia followed for 3 years, we found that anxiety symptoms significantly moderated the relationship between beta-amyloid level and decline in verbal (Cohen's d = 0.65) and episodic (Cohen's d = 0.38) memory. Anxiety symptoms were additionally linked to greater decline in executive function, irrespective of beta-amyloid and other risk factors. These findings suggest that interventions to mitigate anxiety symptoms may help delay memory decline in otherwise healthy older adults with elevated beta-amyloid

    Baseline white matter is associated with physical fitness change in preclinical Alzheimer's disease

    Get PDF
    White matter (WM) microstructure is a sensitive marker to distinguish individuals at risk of Alzheimer's disease. The association of objective physical fitness (PF) measures and WM microstructure has not been explored and mixed results reported with physical activity (PA). Longitudinal studies of WM with PA and PF measures have had limited investigation. This study explored the relationship between objective PF measures over 24-months with "normal-appearing" WM microstructure. Data acquired on magnetic resonance imaging was used to measure "normal-appearing" WM microstructure at baseline and 24-months. Clinical variables such as cognitive and blood-based measures were collected longitudinally. Also, as part of the randomized controlled trial of a PA, extensive measures of PA and fitness were obtained over the 24 months. Bilateral corticospinal tracts (CST) and the corpus callosum showed a significant association between PF performance over 24-months and baseline WM microstructural measures. There was no significant longitudinal effect of the intervention or PF performance over 24-months. Baseline WM microstructural measures were significantly associated with PF performance over 24-months in this cohort of participants with vascular risk factors and at risk of Alzheimer's disease with distinctive patterns for each PF test
    corecore