26 research outputs found

    Deficiency in Neuronal TGF-β Signaling Leads to Nigrostriatal Degeneration and Activation of TGF-β Signaling Protects against MPTP Neurotoxicity in Mice

    Get PDF
    Transforming growth factor-β (TGF-β) plays an important role in the development and maintenance of embryonic dopaminergic (DA) neurons in the midbrain. To study the function of TGF-β signaling in the adult nigrostriatal system, we generated transgenic mice with reduced TGF-β signaling in mature neurons. These mice display age-related motor deficits and degeneration of the nigrostriatal system. Increasing TGF-β signaling in the substantia nigra through adeno-associated virus expressing a constitutively active type I receptor significantly reduces 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration and motor deficits. These results suggest that TGF-β signaling is critical for adult DA neuron survival and that modulating this signaling pathway has therapeutic potential in Parkinson disease.SIGNIFICANCE STATEMENT We show that reducing Transforming growth factor-β (TGF-β) signaling promotes Parkinson disease-related pathologies and motor deficits, and increasing TGF-β signaling reduces neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a parkinsonism-inducing agent. Our results provide a rationale to pursue a means of increasing TGF-β signaling as a potential therapy for Parkinson's disease

    Suppression of Alzheimer-Associated Inflammation by Microglial Prostaglandin-E-2 EP4 Receptor Signaling

    Get PDF
    A persistent and nonresolving inflammatory response to accumulating Aβ peptide species is a cardinal feature in the development of Alzheimer's disease (AD). In response to accumulating Aβ peptide species, microglia, the innate immune cells of the brain, generate a toxic inflammatory response that accelerates synaptic and neuronal injury. Many proinflammatory signaling pathways are linked to progression of neurodegeneration. However, endogenous anti-inflammatory pathways capable of suppressing Aβ-induced inflammation represent a relatively unexplored area. Here we report that signaling through the prostaglandin-E2 (PGE2) EP4 receptor potently suppresses microglial inflammatory responses to Aβ42 peptides. In cultured microglial cells, EP4 stimulation attenuated levels of Aβ42-induced inflammatory factors and potentiated phagocytosis of Aβ42. Microarray analysis demonstrated that EP4 stimulation broadly opposed Aβ42-driven gene expression changes in microglia, with enrichment for targets of IRF1, IRF7, and NF-κB transcription factors. In vivo, conditional deletion of microglial EP4 in APPSwe-PS1ΔE9 (APP-PS1) mice conversely increased inflammatory gene expression, oxidative protein modification, and Aβ deposition in brain at early stages of pathology, but not at later stages, suggesting an early anti-inflammatory function of microglial EP4 signaling in the APP-PS1 model. Finally, EP4 receptor levels decreased significantly in human cortex with progression from normal to AD states, suggesting that early loss of this beneficial signaling system in preclinical AD development may contribute to subsequent progression of pathology

    A Drosophila

    Get PDF
    Glucocerebrosidase (GBA1) mutations are associated with Gaucher disease (GD), an autosomal recessive disorder caused by functional deficiency of glucocerebrosidase (GBA), a lysosomal enzyme that hydrolyzes glucosylceramide to ceramide and glucose. Neuronopathic forms of GD can be associated with rapid neurological decline (Type II) or manifest as a chronic form (Type III) with a wide spectrum of neurological signs. Furthermore, there is now a well-established link between GBA1 mutations and Parkinson's disease (PD), with heterozygote mutations in GBA1 considered the commonest genetic defect in PD. Here we describe a novel Drosophila model of GD that lacks the two fly GBA1 orthologs. This knock-out model recapitulates the main features of GD at the cellular level with severe lysosomal defects and accumulation of glucosylceramide in the fly brain. We also demonstrate a block in autophagy flux in association with reduced lifespan, age-dependent locomotor deficits and accumulation of autophagy substrates in dGBA-deficient fly brains. Furthermore, mechanistic target of rapamycin (mTOR) signaling is downregulated in dGBA knock-out flies, with a concomitant upregulation of Mitf gene expression, the fly ortholog of mammalian TFEB, likely as a compensatory response to the autophagy block. Moreover, the mTOR inhibitor rapamycin is able to partially ameliorate the lifespan, locomotor, and oxidative stress phenotypes. Together, our results demonstrate that this dGBA1-deficient fly model is a useful platform for the further study of the role of lysosomal-autophagic impairment and the potential therapeutic benefits of rapamycin in neuronopathic GD. These results also have important implications for the role of autophagy and mTOR signaling in GBA1-associated PD

    G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo

    Get PDF
    Intronic GGGGCC repeat expansions in C9orf72 are the most common known cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are characterised by degeneration of cortical and motor neurons, respectively. Repeat expansions have been proposed to cause disease by both the repeat RNA forming foci that sequester RNA-binding proteins and through toxic dipeptide repeat proteins generated by repeat-associated non-ATG translation. GGGGCC repeat RNA folds into a G-quadruplex secondary structure, and we investigated whether targeting this structure is a potential therapeutic strategy. We performed a screen that identified three structurally related small molecules that specifically stabilise GGGGCC repeat G-quadruplex RNA We investigated their effect in C9orf72 patient iPSC-derived motor and cortical neurons and show that they significantly reduce RNA foci burden and the levels of dipeptide repeat proteins. Furthermore, they also reduce dipeptide repeat proteins and improve survival in vivo, in GGGGCC repeat-expressing Drosophila Therefore, small molecules that target GGGGCC repeat G-quadruplexes can ameliorate the two key pathologies associated with C9orf72 FTD/ALS These data provide proof of principle that targeting GGGGCC repeat G-quadruplexes has therapeutic potential

    Advances in the therapy of Alzheimer's disease: Targeting amyloid beta and tau and perspectives for the future

    Get PDF
    Worldwide multidisciplinary translational research has led to a growing knowledge of the genetics and molecular pathogenesis of Alzheimer's disease (AD) indicating that pathophysiological brain alterations occur decades before clinical signs and symptoms of cognitive decline can be diagnosed. Consequently, therapeutic concepts and targets have been increasingly focused on early-stage illness before the onset of dementia; and distinct classes of compounds are now being tested in clinical trials. At present, there is a growing consensus that therapeutic progress in AD delaying disease progression would significantly decrease the expanding global burden. The evolving hypothesis- and evidence-based generation of new diagnostic research criteria for early-stage AD has positively impacted the development of clinical trial designs and the characterization of earlier and more specific target populations for trials in prodromal as well as in pre- and asymptomatic at-risk stages of AD

    Shifting equilibriums in Alzheimer's disease: the complex roles of microglia in neuroinflammation, neuronal survival and neurogenesis

    Get PDF
    Alzheimer’s disease is the leading cause of dementia. Its increased prevalence in developed countries, due to the sharp rise in ageing populations, presents one of the costliest challenges to modern medicine. In order to find disease-modifying therapies to confront this challenge, a more complete understanding of the pathogenesis of Alzheimer’s disease is necessary. Recent studies have revealed increasing evidence for the roles played by microglia, the resident innate immune system cells of the brain. Reflecting the well-established roles of microglia in reacting to pathogens and inflammatory stimuli, there is now a growing literature describing both protective and detrimental effects for individual cytokines and chemokines produced by microglia in Alzheimer’s disease. A smaller but increasing number of studies have also addressed the divergent roles played by microglial neurotrophic and neurogenic factors, and how their perturbation may play a key role in the pathogenesis of Alzheimer’s disease. Here we review recent findings on the roles played by microglia in neuroinflammation, neuronal survival and neurogenesis in Alzheimer’s disease. In each case, landmark studies have provided evidence for the divergent ways in which microglia can either promote neuronal function and survival, or perturb neuronal function, leading to cell death. In many cases, the secreted molecules of microglia can lead to divergent effects depending on the magnitude and context of microglial activation. This suggests that microglial functions must be maintained in a fine equilibrium, in order to support healthy neuronal function, and that the cellular microenvironment in the Alzheimer’s disease brain disrupts this fine balance, leading to neurodegeneration. Thus, an understanding of microglial homeostasis, both in health and across the trajectory of the disease state, will improve our understanding of the pathogenic mechanisms underlying Alzheimer’s disease, and will hopefully lead to the development of microglial-based therapeutic strategies to restore equilibrium in the Alzheimer’s disease brain

    PICALM rescues glutamatergic neurotransmission, behavioural function, and survival in a Drosophila model of Aβ42 toxicity

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia and the most prevalent neurodegenerative disease. Genome Wide Association Studies have linked PICALM to AD risk. PICALM has been implicated in Aβ42 production and turn-over, but whether it plays a direct role in modulating Aβ42 toxicity remains unclear. We found that increased expression of the Drosophila PICALM orthologue lap could rescue Aβ42 toxicity in an adult-onset model of AD, without affecting Aβ42 level. Imbalances in the glutamatergic system, leading to excessive, toxic stimulation have been associated with AD. We found that Aβ42 caused accumulation of pre-synaptic vesicular glutamate transporter (VGlut) and increased spontaneous glutamate release. Increased lap expression reversed these phenotypes back to control levels, suggesting that lap may modulate glutamatergic transmission. We also found that lap modulated the localisation of Amph, the homologue of another AD risk factor BIN1, and that Amph itself modulated post-synaptic glutamate receptor (GluRII) localisation. We propose a model where PICALM modulates glutamatergic transmission, together with BIN1, to ameliorate synaptic dysfunction and disease progression

    Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila

    Get PDF
    Increased cellular degradation by autophagy is a feature of many interventions that delay ageing. We report here that increased autophagy is necessary for reduced insulin-like signalling (IIS) to extend lifespan in Drosophila and is sufficient on its own to increase lifespan. We first established that the well-characterised lifespan extension associated with deletion of the insulin receptor substrate chico was completely abrogated by downregulation of the essential autophagy gene Atg5. We next directly induced autophagy by over-expressing the major autophagy kinase Atg1 and found that a mild increase in autophagy extended lifespan. Interestingly, strong Atg1 up-regulation was detrimental to lifespan. Transcriptomic and metabolomic approaches identified specific signatures mediated by varying levels of autophagy in flies. Transcriptional upregulation of mitochondrial-related genes was the signature most specifically associated with mild Atg1 upregulation and extended lifespan, whereas short-lived flies, possessing strong Atg1 overexpression, showed reduced mitochondrial metabolism and up-regulated immune system pathways. Increased proteasomal activity and reduced triacylglycerol levels were features shared by both moderate and high Atg1 overexpression conditions. These contrasting effects of autophagy on ageing and differential metabolic profiles highlight the importance of fine-tuning autophagy levels to achieve optimal healthspan and disease prevention
    corecore