11 research outputs found

    The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside

    No full text
    At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP's selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches. These studies clearly demonstrate 3BP's broad action against multiple cancer types. Clinical trials using 3BP are needed to further support its anticancer efficacy against multiple cancer types thus making it available to more than 30 million patients living with cancer worldwide. This review discusses current knowledge about 3BP related to cancer and discusses also the possibility of its use in future clinical applications as it relates to safety and treatment issues.This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569)funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI). João Azevedo-Silva received a fellowship from the Portuguese government from the FCT through FSE (Fundo Social Europeu) and POPH (Programa Operacional Potencial Humano) [grant number SFRH/BD/76038/2011]. Co-author Peter L.Pedersen was supported by NIH grant NCICAl0951 for many years for cancer research that led to a number of the findings described in this review.info:eu-repo/semantics/publishedVersio

    Botnet detection techniques: review, future trends, and issues

    No full text
    NoIn recent years, the Internet has enabled access to widespread remote services in the distributed computing environment; however, integrity of data transmission in the distributed computing platform is hindered by a number of security issues. For instance, the botnet phenomenon is a prominent threat to Internet security, including the threat of malicious codes. The botnet phenomenon supports a wide range of criminal activities, including distributed denial of service (DDoS) attacks, click fraud, phishing, malware distribution, spam emails, and building machines for illegitimate exchange of information/materials. Therefore, it is imperative to design and develop a robust mechanism for improving the botnet detection, analysis, and removal process. Currently, botnet detection techniques have been reviewed in different ways; however, such studies are limited in scope and lack discussions on the latest botnet detection techniques. This paper presents a comprehensive review of the latest state-of-the-art techniques for botnet detection and figures out the trends of previous and current research. It provides a thematic taxonomy for the classification of botnet detection techniques and highlights the implications and critical aspects by qualitatively analyzing such techniques. Related to our comprehensive review, we highlight future directions for improving the schemes that broadly span the entire botnet detection research field and identify the persistent and prominent research challenges that remain open.University of Malaya, Malaysia (No. FP034-2012A

    Cell culture assays for chemicals with tumor-promoting or tumor-inhibiting activity based on the modulation of intercellular communication

    No full text
    corecore