10 research outputs found

    Experimental evidence for the preservation of U-Pb isotope ratios in mantle-recycled crustal zircon grains

    Get PDF
    Zircon of crustal origin found in mantle-derived rocks is of great interest because of the information it may provide about crust recycling and mantle dynamics. Consideration of this requires understanding of how mantle temperatures, notably higher than zircon crystallization temperatures, affected the recycled zircon grains, particularly their isotopic clocks. Since Pb2+ diffuses faster than U4+ and Th+4, it is generally believed that recycled zircon grains lose all radiogenic Pb after a few million years, thus limiting the time range over which they can be detected. Nonetheless, this might not be the case for zircon included in mantle minerals with low Pb2+ diffusivity and partitioning such as olivine and orthopyroxene because these may act as zircon sealants. Annealing experiments with natural zircon embedded in cristobalite (an effective zircon sealant) show that zircon grains do not lose Pb to their surroundings, although they may lose some Pb to molten inclusions. Diffusion tends to homogenize the Pb concentration in each grain changing the U-Pb and Th-Pb isotope ratios proportionally to the initial 206Pb, 207Pb and 208Pb concentration gradients (no gradient-no change) but in most cases the original age is still recognizable. It seems, therefore, that recycled crustal zircon grains can be detected, and even accurately dated, no matter how long they have dwelled in the mantle.This paper has been financed by the Spanish Grants CGL2013-40785-P and CGL2017-84469-P

    Ninety million years of orogenesis, 250 million years of quiescence and further orogenesis with no change in PT: significance for the role of deformation in porphyroblast growth

    Get PDF
    In situ dating of monazite grains preserved as inclusions within foliations defining FIAs (foliation inflection/intersection axes preserved within porphyroblasts) contained within garnet, staurolite, andalusite and cordierite porphyroblasts provides a chronology of ages that matches the FIA succession for the Big Thompson region of the northern Colorado Rocky Mountains. FIA sets 1, 2 and 3 trending NE–SW, E–W and SE–NW were formed at 1760.5 ± 9.7, 1719.7 ± 6.4 and 1674 ± 11 Ma, respectively. For three samples where garnet first grew during just one of each of these FIAs, the intersection of Ca, Mg, and Fe isopleths in their cores indicate that these rocks never got above 4 kbars throughout the Colorado Orogeny. Furthermore, they remained around approximately the same depth for ~250 million years to the onset of the younger Berthoud Orogeny at 1415 ± 16 Ma when the pressure decreased slightly as porphyroblasts formed with inclusion trails preserving FIA set 4 trending NNE–SSW. No porphyroblast growth occurred during the intervening ~250 million years of quiescence, even though the PT did not change over this period. This confirms microstructural evidence gathered over the past 25 years that crenulation deformation at the scale of a porphyroblast is required for reactions to re-initiate and enable further growth

    Accessory Phases in the Genesis of Igneous Rocks

    No full text

    Episodes of fissure formation in the Alps: connecting quartz fluid inclusion, fissure monazite age, and fissure orientation data

    No full text

    Respiratory depression and spinal opioids

    No full text

    Glycoconjugate Vaccines

    No full text
    corecore