2,263 research outputs found

    Spatial and temporal variations in the occurrences of wet periods over major river basins in India

    Get PDF
    This study highlights the hydro-climatic features of the five wet periods contributing in different percentages to the annual rainfall total over major river basins in India. Spatial and temporal variations in the parameters such as starting date, duration and rainfall intensity of these wet periods throughout India have been discussed using daily gridded rainfall data for the period 1951-2007. An attempt is also made here, to assess the impact of global SSTs on the start and duration of the wet periods in Indian river basins. It is observed that, for almost all river basins in India, the 10 wet period occurs in the months of July/August with an average duration of 1-3 days and rainfall intensity varying from 44 to 89 mm/day. The duration of the wet period contributing 90 to the annual rainfall varies from 112 days in the central parts of India to 186 days in the northern parts of the country. Significant increase in the rainfall intensity has been observed in the case of some river basins of central India. The late start of 75 wet period along the West Coast and in peninsular river basins has been observed with increase in Nino 3.4 SSTs (MAM), while increase in the duration of the 75 wet period over the Krishna basin is associated with increase in Nino 3.4 SSTs (concurrent JJAS)

    Reactive Oxygen Species Formation in the Brain at Different Oxygen Levels: The Role of Hypoxia Inducible Factors.

    Get PDF
    Hypoxia inducible factor (HIF) is the master oxygen sensor within cells and is central to the regulation of cell responses to varying oxygen levels. HIF activation during hypoxia ensures optimum ATP production and cell integrity, and is associated both directly and indirectly with reactive oxygen species (ROS) formation. HIF activation can either reduce ROS formation by suppressing the function of mitochondrial tricarboxylic acid cycle (TCA cycle), or increase ROS formation via NADPH oxidase (NOX), a target gene of HIF pathway. ROS is an unavoidable consequence of aerobic metabolism. In normal conditions (i.e., physioxia), ROS is produced at minimal levels and acts as a signaling molecule subject to the dedicated balance between ROS production and scavenging. Changes in oxygen concentrations affect ROS formation. When ROS levels exceed defense mechanisms, ROS causes oxidative stress. Increased ROS levels can also be a contributing factor to HIF stabilization during hypoxia and reoxygenation. In this review, we systemically review HIF activation and ROS formation in the brain during hypoxia and hypoxia/reoxygenation. We will then explore the literature describing how changes in HIF levels might provide pharmacological targets for effective ischaemic stroke treatment. HIF accumulation in the brain via HIF prolyl hydroxylase (PHD) inhibition is proposed as an effective therapy for ischaemia stroke due to its antioxidation and anti-inflammatory properties in addition to HIF pro-survival signaling. PHD is a key regulator of HIF levels in cells. Pharmacological inhibition of PHD increases HIF levels in normoxia (i.e., at 20.9% O2 level). Preconditioning with HIF PHD inhibitors show a neuroprotective effect in both in vitro and in vivo ischaemia stroke models, but post-stroke treatment with PHD inhibitors remains debatable. HIF PHD inhibition during reperfusion can reduce ROS formation and activate a number of cellular survival pathways. Given agents targeting individual molecules in the ischaemic cascade (e.g., antioxidants) fail to be translated in the clinic setting, thus far, HIF pathway targeting and thereby impacting entire physiological networks is a promising drug target for reducing the adverse effects of ischaemic stroke

    Unique and conserved MicroRNAs in wheat chromosome 5D revealed by next-generation sequencing

    Get PDF
    MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat

    Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya

    Get PDF
    The importance of medicinal plants in traditional healthcare practices, providing clues to new areas of research and in biodiversity conservation is now well recognized. However, information on the uses for plants for medicine is lacking from many interior areas of Himalaya. Keeping this in view the present study was initiated in a tribal dominated hinterland of western Himalaya. The study aimed to look into the diversity of plant resources that are used by local people for curing various ailments. Questionnaire surveys, participatory observations and field visits were planned to illicit information on the uses of various plants. It was found that 35 plant species are commonly used by local people for curing various diseases. In most of the cases (45%) under ground part of the plant was used. New medicinal uses of Ranunculus hirtellus and Anemone rupicola are reported from this area. Similarly, preparation of "sik" a traditional recipe served as a nutritious diet to pregnant women is also not documented elsewhere. Implication of developmental activities and changing socio-economic conditions on the traditional knowledge are also discussed

    Biocompatibility and Biodegradation Studies of Subconjunctival Implants in Rabbit Eyes

    Get PDF
    Sustained ocular drug delivery is difficult to achieve. Most drugs have poor penetration due to the multiple physiological barriers of the eye and are rapidly cleared if applied topically. Biodegradable subconjunctival implants with controlled drug release may circumvent these two problems. In our study, two microfilms (poly [d,l-lactide-co-glycolide] PLGA and poly[d,l-lactide-co-caprolactone] PLC were developed and evaluated for their degradation behavior in vitro and in vivo. We also evaluated the biocompatibility of both microfilms. Eighteen eyes (9 rabbits) were surgically implanted with one type of microfilm in each eye. Serial anterior-segment optical coherence tomography (AS-OCT) scans together with serial slit-lamp microscopy allowed us to measure thickness and cross-sectional area of the microfilms. In vitro studies revealed bulk degradation kinetics for both microfilms, while in vivo studies demonstrated surface erosion kinetics. Serial slit-lamp microscopy revealed no significant inflammation or vascularization in both types of implants (mean increase in vascularity grade PLGA50/50 12±0.5% vs. PLC70/30 15±0.6%; P = 0.91) over a period of 6 months. Histology, immunohistochemistry and immuno-fluorescence also revealed no significant inflammatory reaction from either of the microfilms, which confirmed that both microfilms are biocompatible. The duration of the drug delivery can be tailored by selecting the materials, which have different degradation kinetics, to suit the desired clinical therapeutic application

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    Falling behind: life expectancy in US counties from 2000 to 2007 in an international context

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The United States health care debate has focused on the nation's uniquely high rates of lack of insurance and poor health outcomes relative to other high-income countries. Large disparities in health outcomes are well-documented in the US, but the most recent assessment of county disparities in mortality is from 1999. It is critical to tracking progress of health reform legislation to have an up-to-date assessment of disparities in life expectancy across counties. US disparities can be seen more clearly in the context of how progress in each county compares to international trends.</p> <p>Methods</p> <p>We use newly released mortality data by age, sex, and county for the US from 2000 to 2007 to compute life tables separately for each sex, for all races combined, for whites, and for blacks. We propose, validate, and apply novel methods to estimate recent life tables for small areas to generate up-to-date estimates. Life expectancy rates and changes in life expectancy for counties are compared to the life expectancies across nations in 2000 and 2007. We calculate the number of calendar years behind each county is in 2000 and 2007 compared to an international life expectancy time series.</p> <p>Results</p> <p>Across US counties, life expectancy in 2007 ranged from 65.9 to 81.1 years for men and 73.5 to 86.0 years for women. When compared against a time series of life expectancy in the 10 nations with the lowest mortality, US counties range from being 15 calendar years ahead to over 50 calendar years behind for men and 16 calendar years ahead to over 50 calendar years behind for women. County life expectancy for black men ranges from 59.4 to 77.2 years, with counties ranging from seven to over 50 calendar years behind the international frontier; for black women, the range is 69.6 to 82.6 years, with counties ranging from eight to over 50 calendar years behind. Between 2000 and 2007, 80% (men) and 91% (women) of American counties fell in standing against this international life expectancy standard.</p> <p>Conclusions</p> <p>The US has extremely large geographic and racial disparities, with some communities having life expectancies already well behind those of the best-performing nations. At the same time, relative performance for most communities continues to drop. Efforts to address these issues will need to tackle the leading preventable causes of death.</p
    • …
    corecore