36 research outputs found

    Why Does the Giant Panda Eat Bamboo? A Comparative Analysis of Appetite-Reward-Related Genes among Mammals

    Get PDF
    Background: The giant panda has an interesting bamboo diet unlike the other species in the order of Carnivora. The umami taste receptor gene T1R1 has been identified as a pseudogene during its genome sequencing project and confirmed using a different giant panda sample. The estimated mutation time for this gene is about 4.2 Myr. Such mutation coincided with the giant panda’s dietary change and also reinforced its herbivorous life style. However, as this gene is preserved in herbivores such as cow and horse, we need to look for other reasons behind the giant panda’s diet switch. Methodology/Principal Findings: Since taste is part of the reward properties of food related to its energy and nutrition contents, we did a systematic analysis on those genes involved in the appetite-reward system for the giant panda. We extracted the giant panda sequence information for those genes and compared with the human sequence first and then with seven other species including chimpanzee, mouse, rat, dog, cat, horse, and cow. Orthologs in panda were further analyzed based on the coding region, Kozak consensus sequence, and potential microRNA binding of those genes. Conclusions/Significance: Our results revealed an interesting dopamine metabolic involvement in the panda’s food choice

    Role of opioid receptors in the reinstatement of opioid-seeking behavior: an overview

    No full text
    Opioid abuse in humans is characterized by discontinuous periods of drug use and abstinence. With time, the probability of falling into renewed drug consumption becomes particularly high and constitutes a considerable problem in the management of heroin addicts. The major problem in the treatment of opioid dependence still remains the occurrence of relapse, to which stressful life events, renewed use of heroin, and exposure to drug-associated environmental cues are all positively correlated. To study the neurobiology of relapse, many research groups currently use the reinstatement animal model, which greatly contributed to disentangle the mechanisms underlying relapse to drug-seeking in laboratory animals. The use of this model is becoming increasingly popular worldwide, and new versions have been recently developed to better appreciate the differential contribution of each opioid receptor subtype to the relapse phenomenon. In this chapter we review the state of the art of our knowledge on the specific role of the opioid receptors as unrevealed by the reinstatement animal model of opioid-seeking behavior
    corecore