374 research outputs found

    Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes

    Full text link
    © 2017 The Author(s) Myelodysplastic syndromes and chronic myelomonocytic leukemia are blood disorders characterized by ineffective hematopoiesis and progressive marrow failure that can transform into acute leukemia. The DNA methyltransferase inhibitor 5-azacytidine (AZA) is the most effective pharmacological option, but only ∼50% of patients respond. A response only manifests after many months of treatment and is transient. The reasons underlying AZA resistance are unknown, and few alternatives exist for non-responders. Here, we show that AZA responders have more hematopoietic progenitor cells (HPCs) in the cell cycle. Non-responder HPC quiescence is mediated by integrin α5 (ITGA5) signaling and their hematopoietic potential improved by combining AZA with an ITGA5 inhibitor. AZA response is associated with the induction of an inflammatory response in HPCs in vivo. By molecular bar coding and tracking individual clones, we found that, although AZA alters the sub-clonal contribution to different lineages, founder clones are not eliminated and continue to drive hematopoiesis even in complete responders

    An Ecological Study of the Determinants of Differences in 2009 Pandemic Influenza Mortality Rates between Countries in Europe

    Get PDF
    Pandemic A (H1N1) 2009 mortality rates varied widely from one country to another. Our aim was to identify potential socioeconomic determinants of pandemic mortality and explain between-country variation.Based on data from a total of 30 European countries, we applied random-effects Poisson regression models to study the relationship between pandemic mortality rates (May 2009 to May 2010) and a set of representative environmental, health care-associated, economic and demographic country-level parameters. The study was completed by June 2010.Most regression approaches indicated a consistent, statistically significant inverse association between pandemic influenza-related mortality and per capita government expenditure on health. The findings were similar in univariable [coefficient: -0.00028, 95% Confidence Interval (CI): -0.00046, -0.00010, p = 0.002] and multivariable analyses (including all covariates, coefficient: -0.00107, 95% CI: -0.00196, -0.00018, p = 0.018). The estimate was barely insignificant when the multivariable model included only significant covariates from the univariate step (coefficient: -0.00046, 95% CI: -0.00095, 0.00003, p = 0.063).Our findings imply a significant inverse association between public spending on health and pandemic influenza mortality. In an attempt to interpret the estimated coefficient (-0.00028) for the per capita government expenditure on health, we observed that a rise of 100 international dollars was associated with a reduction in the pandemic influenza mortality rate by approximately 2.8%. However, further work needs to be done to unravel the mechanisms by which reduced government spending on health may have affected the 2009 pandemic influenza mortality

    Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture

    Get PDF
    Alzheimer's disease (AD) is pathologically characterised by the age-dependent deposition of β-amyloid (Aβ) in senile plaques, intraneuronal accumulation of tau as neurofibrillary tangles, synaptic dysfunction and neuronal death. Neuroinflammation, typified by the accumulation of activated microglia and reactive astrocytes, is believed to modulate the development and/or progression of AD. We have used primary rat neuronal, astrocytic and mixed cortical cultures to investigate the contribution of astrocyte-mediated inflammatory responses during Aβ-induced neuronal loss. We report that the presence of small numbers of astrocytes exacerbate Aβ-induced neuronal death, caspase-3 activation and the production of caspase-3-cleaved tau. Furthermore, we show that astrocytes are essential for the Aβ-induced tau phosphorylation observed in primary neurons. The release of soluble inflammatory factor(s) from astrocytes accompanies these events, and inhibition of astrocyte activation with the anti-inflammatory agent, minocycline, reduces astrocytic inflammatory responses and the associated neuronal loss. Aβ-induced increases in caspase-3 activation and the production of caspase-3-truncated tau species in neurons were reduced when the astrocytic response was attenuated with minocycline. Taken together, these results show that astrocytes are important mediators of the neurotoxic events downstream of elevated Aβ in models of AD, and suggest that mechanisms underlying pro-inflammatory cytokine release might be an important target for therapy

    EGFR, CD10 and proliferation marker Ki67 expression in ameloblastoma: possible role in local recurrence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ameloblastoma is an odontogenic neoplasm characterized by local invasiveness and tendency towards recurrence.</p> <p>Aims</p> <p>Studying the role played by EGFR, CD10 and Ki67 in the recurrence of ameloblastoma.</p> <p>Methods</p> <p>This study was carried out on 22 retrospective cases of mandibular ameloblastoma from the period from Jan 2002 to Jan 2008 with follow up period until Jan 2011 (3 to 8 years follow up peroid). Archival materials were obtained from pathology department, Mansoura university. Paraffin sections of tumor tissue from all cases were submitted for routine H&E stains and immunohistochemistry using EGFR, CD10 and Ki67 monoclonal antibodies. Statistical analysis using of clinical data for all patients, tumor type, EGFR, CD10 and Ki67 expression in relation to recurrence were evaluated.</p> <p>Results</p> <p>Among the 22 cases, 10 cases were males and 12 were females with sex ratio 1:1.2. Age ranged from 34 to 59 years old with a mean age 44.18 year. Five cases showed local recurrence within studied period and proved by biopsy. No statistically significant relation was found between local recurrence and patient age, tumor size, tumor type, EGFR expression. There was a significant relation between CD10 expression as well as Ki67 labelling index and recurrence (P value = 0.003, 0.000 respectively).</p> <p>Conclusion</p> <p>Evaluation of CD10 and Ki67 status together with conventional histological evaluation can help in providing more information about the biologic behavior of the tumor, while EGFR could be a target of an expanding class of anticancer therapies.</p> <p>Since ameloblastomas are EGFR-positive tumors, anti-EGFR agents could be considered to reduce the size of large tumors and to treat unresectable tumors that are in close proximity to vital structures.</p> <p>Virtual Slides</p> <p>The virtual slide(s) for this article can be found here:</p> <p><url>http://www.diagnosticpathology.diagnomx.eu/vs/1902106905645651</url></p

    How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine

    Get PDF
    Carcinogenesis is an evolutionary process that establishes the ‘hallmarks of cancer' by natural selection of cell clones that have acquired advantageous heritable characteristics. Evolutionary adaptation has also been proposed as a mechanism that promotes drug resistance during systemic cancer therapy. This review summarises the evidence for the evolution of resistance to cytotoxic and targeted anti-cancer drugs according to Darwinian models and highlights the roles of genomic instability and high intra-tumour genetic heterogeneity as major accelerators of this evolutionary process. Clinical implications and strategies that may prevent the evolution of resistance or target the origins of genetic heterogeneity are discussed. New technologies to measure intra-tumour heterogeneity and translational research on serial biopsies of cancer lesions during and after therapeutic intervention are identified as key areas to further the understanding of determinants and mechanisms of the evolution of drug resistance

    Lifecourse socioeconomic circumstances and multimorbidity among older adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many older adults manage multiple chronic conditions (i.e. multimorbidity); and many of these chronic conditions share common risk factors such as low socioeconomic status (SES) in adulthood and low SES across the lifecourse. To better capture socioeconomic condition in childhood, recent research in lifecourse epidemiology has broadened the notion of SES to include the experience of specific hardships. In this study we investigate the association among childhood financial hardship, lifetime earnings, and multimorbidity.</p> <p>Methods</p> <p>Cross-sectional analysis of 7,305 participants age 50 and older from the 2004 Health and Retirement Study (HRS) who also gave permission for their HRS records to be linked to their Social Security Records in the United States. Zero-inflated Poisson regression models were used to simultaneously model the likelihood of the absence of morbidity and the expected number of chronic conditions.</p> <p>Results</p> <p>Childhood financial hardship and lifetime earnings were not associated with the absence of morbidity. However, childhood financial hardship was associated with an 8% higher number of chronic conditions; and, an increase in lifetime earnings, operationalized as average annual earnings during young and middle adulthood, was associated with a 5% lower number of chronic conditions reported. We also found a significant interaction between childhood financial hardship and lifetime earnings on multimorbidity.</p> <p>Conclusions</p> <p>This study shows that childhood financial hardship and lifetime earnings are associated with multimorbidity, but not associated with the absence of morbidity. Lifetime earnings modified the association between childhood financial hardship and multimorbidity suggesting that this association is differentially influential depending on earnings across young and middle adulthood. Further research is needed to elucidate lifecourse socioeconomic pathways associated with the absence of morbidity and the presence of multimorbidity among older adults.</p

    Non-Antioxidant Properties of α-Tocopherol Reduce the Anticancer Activity of Several Protein Kinase Inhibitors In Vitro

    Get PDF
    The antioxidant properties of α-tocopherol have been proposed to play a beneficial chemopreventive role against cancer. However, emerging data also indicate that it may exert contrasting effects on the efficacy of chemotherapeutic treatments when given as dietary supplement, being in that case harmful for patients. This dual role of α-tocopherol and, in particular, its effects on the efficacy of anticancer drugs remains poorly documented. For this purpose, we studied here, using high throughput flow cytometry, the direct impact of α-tocopherol on apoptosis and cell cycle arrest induced by different cytotoxic agents on various models of cancer cell lines in vitro. Our results indicate that physiologically relevant concentrations of α-tocopherol strongly compromise the cytotoxic and cytostatic action of various protein kinase inhibitors (KI), while other classes of chemotherapeutic agents or apoptosis inducers are unaffected by this vitamin. Interestingly, these anti-chemotherapeutic effects of α-tocopherol appear to be unrelated to its antioxidant properties since a variety of other antioxidants were completely neutral toward KI-induced cell cycle arrest and cell death. In conclusion, our data suggest that dietary α-tocopherol could limit KI effects on tumour cells, and, by extent, that this could result in a reduction of the clinical efficacy of anti-cancer treatments based on KI molecules

    Investigation of the Enteric Pathogenic Potential of Oral Campylobacter concisus Strains Isolated from Patients with Inflammatory Bowel Disease

    Get PDF
    BACKGROUND: Campylobacter concisus, a bacterium colonizing the human oral cavity, has been shown to be associated with inflammatory bowel disease (IBD). This study investigated if patients with IBD are colonized with specific oral C. concisus strains that have potential to cause enteric diseases. METHODOLOGY: Seventy oral and enteric C. concisus isolates obtained from eight patients with IBD and six controls were examined for housekeeping genes by multilocus sequence typing (MLST), Caco2 cell invasion by gentamicin-protection-assay, protein analysis by mass spectrometry and SDS-PAGE, and morphology by scanning electron microscopy. The whole genome sequenced C. concisus strain 13826 which was isolated from an individual with bloody diarrhea was included in MLST analysis. PRINCIPAL FINDINGS: MLST analysis showed that 87.5% of individuals whose C. concisus belonged to Cluster I had inflammatory enteric diseases (six IBD and one with bloody diarrhea), which was significantly higher than that in the remaining individuals (28.6%) (P<0.05). Enteric invasive C. concisus (EICC) oral strain was detected in 50% of patients with IBD and none of the controls. All EICC strains were in Cluster 1. The C. concisus strain colonizing intestinal tissues of patient No. 1 was closely related to the oral C. concisus strain from patient No. 6 and had gene recombination with the patient's own oral C. concisus. The oral and intestinal C. concisus strains of patient No. 3 were the same strain. Some individuals were colonized with multiple oral C. concisus strains that have undergone natural recombination. CONCLUSIONS: This study provides the first evidence that patients with IBD are colonized with specific oral C. concisus strains, with some being EICC strains. C. concisus colonizing intestinal tissues of patients with IBD at least in some instances results from an endogenous colonization of the patient's oral C. concisus and that C. concisus strains undergo natural recombination

    Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

    Get PDF
    Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases
    corecore