13 research outputs found

    Regulation of proteasome assembly and activity in health and disease

    Get PDF

    The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity

    Get PDF
    Plants tailor their metabolism to environmental conditions, in part through the recognition of a wide array of self and non-self molecules. In particular, the perception of microbial or plant-derived molecular patterns by cell-surface-localized pattern recognition receptors (PRRs) induces pattern-triggered immunity, which includes massive transcriptional reprogramming1. An increasing number of plant PRRs and corresponding ligands are known, but whether plants tune their immune outputs to patterns of different biological origins or of different biochemical natures remains mostly unclear. Here, we performed a detailed transcriptomic analysis in an early time series focused to study rapid-signalling transcriptional outputs induced by well-characterized patterns in the model plant Arabidopsis thaliana. This revealed that the transcriptional responses to diverse patterns (independent of their origin, biochemical nature or type of PRR) are remarkably congruent. Moreover, many of the genes most rapidly and commonly upregulated by patterns are also induced by abiotic stresses, suggesting that the early transcriptional response to patterns is part of the plant general stress response (GSR). As such, plant cells' response is in the first instance mostly to danger. Notably, the genetic impairment of the GSR reduces pattern-induced antibacterial immunity, confirming the biological relevance of this initial danger response. Importantly, the definition of a small subset of 'core immunity response' genes common and specific to pattern response revealed the function of previously uncharacterized GLUTAMATE RECEPTOR-LIKE (GLR) calcium-permeable channels in immunity. This study thus illustrates general and unique properties of early immune transcriptional reprogramming and uncovers important components of plant immunity

    The reliability of a quality appraisal tool for studies of diagnostic reliability (QAREL)

    Get PDF
    Background The aim of this project was to investigate the reliability of a new 11-item quality appraisal tool for studies of diagnostic reliability (QAREL). The tool was tested on studies reporting the reliability of any physical examination procedure. The reliability of physical examination is a challenging area to study given the complex testing procedures, the range of tests, and lack of procedural standardisation. Methods Three reviewers used QAREL to independently rate 29 articles, comprising 30 studies, published during 2007. The articles were identified from a search of relevant databases using the following string: “Reproducibility of results (MeSH) OR reliability (t.w.) AND Physical examination (MeSH) OR physical examination (t.w.).” A total of 415 articles were retrieved and screened for inclusion. The reviewers undertook an independent trial assessment prior to data collection, followed by a general discussion about how to score each item. At no time did the reviewers discuss individual papers. Reliability was assessed for each item using multi-rater kappa (Îș). Results Multi-rater reliability estimates ranged from Îș = 0.27 to 0.92 across all items. Six items were recorded with good reliability (Îș > 0.60), three with moderate reliability (Îș = 0.41 - 0.60), and two with fair reliability (Îș = 0.21 - 0.40). Raters found it difficult to agree about the spectrum of patients included in a study (Item 1) and the correct application and interpretation of the test (Item 10). Conclusions In this study, we found that QAREL was a reliable assessment tool for studies of diagnostic reliability when raters agreed upon criteria for the interpretation of each item. Nine out of 11 items had good or moderate reliability, and two items achieved fair reliability. The heterogeneity in the tests included in this study may have resulted in an underestimation of the reliability of these two items. We discuss these and other factors that could affect our results and make recommendations for the use of QAREL
    corecore