35,002 research outputs found

    A new angle on throwing

    Get PDF
    Copyright @ 2006 Institute of physic

    Release angle for attaining maximum distance in the soccer throw-in

    Get PDF
    We investigated the release angle that maximises the distance attained in a long soccer throw-in. One male soccer player performed maximum-effort throws using release angles of between 10 and 60º, and the throws were analysed using two-dimensional videography. The player’s optimum release angle was calculated by substituting mathematical expressions for the measured relationships between release speed, release height and release angle into the equations for the flight of a spherical projectile. We found that the musculoskeletal structure of the player’s body had a strong influence on the optimum release angle. When using low release angles the player released the ball with a greater release speed and, because the range of a projectile is strongly dependent on the release speed, this bias toward low release angles reduced the optimum release angle to about 30°. Calculations showed that the distance of a throw may be increased by a few metres by launching the ball with a fast backspin, but the ball must be launched at a slightly lower release angle

    Optimum projection angle for attaining maximum distance in a soccer punt kick

    Get PDF
    Copyright @ Journal of Sports Science and Medicine 2011.This article has been made available through the Brunel Open Access Publishing Fund.To produce the greatest horizontal distance in a punt kick the ball must be projected at an appropriate angle. Here, we investigated the optimum projection angle that maximises the distance attained in a punt kick by a soccer goalkeeper. Two male players performed many maximum-effort kicks using projection angles of between 10 degrees and 90 degrees. The kicks were recorded by a video camera at 100 Hz and a 2-D biomechanical analysis was conducted to obtain measures of the projection velocity, projection angle, projection height, ball spin rate, and foot velocity at impact. The player's optimum projection angle was calculated by substituting mathematical equations for the relationships between the projection variables into the equations for the aerodynamic flight of a soccer ball. The calculated optimum projection angles were in agreement with the player's preferred projection angles (40 degrees and 44 degrees). In projectile sports even a small dependence of projection velocity on projection angle is sufficient to produce a substantial shift in the optimum projection angle away from 45 degrees. In the punt kicks studied here, the optimum projection angle was close to 45 degrees because the projection velocity of the ball remained almost constant across all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the projection velocity the athlete is able to achieve decreases substantially with increasing projection angle and so the optimum projection angle is well below 45 degrees.This article is made available through the Brunel University Open Access Publishing Fund

    Changes in long jump take-off technique with increasing run-up speed

    Get PDF
    The aim of this study was to determine the influence of run-up speed on take-off technique in the long jump. Seventy-one jumps by an elite male long jumper were recorded in the sagittal plane by a high-speed video camera. A wide range of run-up speeds was obtained using direct intervention to set the length of the athlete's run-up. As the athlete's run-up speed increased, the jump distance and take-off speed increased, the leg angle at touchdown remained almost unchanged, and the take-off angle and take-off duration steadily decreased. The predictions of two previously published mathematical models of the long jump take-off are in reasonable agreement with the experimental data

    Effects of musically-induced emotions on choice reaction time performance

    Get PDF
    The main objective of the current study was to examine the impact of musically-induced emotions on athletes’ subsequent choice reaction time (CRT) performance. A random sample of 54 tennis players listened to researcher-selected music whose tempo and intensity were modified to yield six different music excerpts (three tempi x two intensities) before completing a CRT task. Affective responses, heart rate (HR), and RTs for each condition were contrasted with white noise and silence conditions. As predicted, faster music tempi elicited more pleasant and aroused emotional states; and higher music intensity yielded both higher arousal (p < .001) and faster subsequent CRT performance (p < .001). White noise was judged significantly less pleasant than all experimental conditions (p < .001); and silence was significantly less arousing than all but one experimental condition (p < .001). The implications for athletes’ use of music as part of a preevent routine when preparing for reactive tasks are discussed

    The Carboniferous Southern Pennine Basin, UK

    Get PDF
    Many of the Carboniferous outcrops located in the Derbyshire region of the Peak District National Park, UK, have provided sites for both significant and pioneering research relating to the clastic sedimentology of marine palaeoenvironments, particularly so during the 1960s and 1970s when early models describing the sedimentary architecture of fluvio-deltaic, submarine slope and deep-marine submarine-fan sedimentation were first developed. The area was subject to hydrocarbon exploration from the 1920s to 1950s, which although unsuccessful in economic terms left a legacy of sub-surface data. Despite a long-history of sedimentological research, the deposits exposed at several classic localities in the Pennine Basin continue to broaden and challenge our current understanding of sedimentary processes to this day
    • …
    corecore