25 research outputs found

    Particle-Number Reprojection in the Shell Model Monte Carlo Method: Application to Nuclear Level Densities

    Full text link
    We introduce a particle-number reprojection method in the shell model Monte Carlo that enables the calculation of observables for a series of nuclei using a Monte Carlo sampling for a single nucleus. The method is used to calculate nuclear level densities in the complete (pf+g9/2)(pf+g_{9/2})-shell using a good-sign Hamiltonian. Level densities of odd-A and odd-odd nuclei are reliably extracted despite an additional sign problem. Both the mass and the TzT_z dependence of the experimental level densities are well described without any adjustable parameters. The single-particle level density parameter is found to vary smoothly with mass. The odd-even staggering observed in the calculated backshift parameter follows the experimental data more closely than do empirical formulae.Comment: 14 pages, 4 eps figures included, RevTe

    Chaotic wave functions and exponential convergence of low-lying energy eigenvalues

    Get PDF
    We suggest that low-lying eigenvalues of realistic quantum many-body hamiltonians, given, as in the nuclear shell model, by large matrices, can be calculated, instead of the full diagonalization, by the diagonalization of small truncated matrices with the exponential extrapolation of the results. We show numerical data confirming this conjecture. We argue that the exponential convergence in an appropriate basis may be a generic feature of complicated ("chaotic") systems where the wave functions are localized in this basis.Comment: 4 figure

    Parity Dependence of Nuclear Level Densities

    Get PDF
    A simple formula for the ratio of the number of odd- and even-parity states as a function of temperature is derived. This formula is used to calculate the ratio of level densities of opposite parities as a function of excitation energy. We test the formula with quantum Monte Carlo shell model calculations in the (pf+g9/2)(pf+g_{9/2})-shell. The formula describes well the transition from low excitation energies where a single parity dominates to high excitations where the two densities are equal.Comment: 14 pages, 4 eps figures included, RevTe

    Benchmark Test Calculation of a Four-Nucleon Bound State

    Get PDF
    In the past, several efficient methods have been developed to solve the Schroedinger equation for four-nucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis variational, the stochastic variational, the hyperspherical variational, the Green's function Monte Carlo, the no-core shell model and the effective interaction hyperspherical harmonic methods. In this article we compare the energy eigenvalue results and some wave function properties using the realistic AV8' NN interaction. The results of all schemes agree very well showing the high accuracy of our present ability to calculate the four-nucleon bound state.Comment: 17 pages, 1 figure

    One maternal lineage leads the expansion of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae) in the new and old worlds.

    Get PDF
    The bronze bug, Thaumastocoris peregrinus, an Australian native insect, has become a nearly worldwide invasive pest in the last 16 years and has been causing signifcant damage to eucalypts (Myrtaceae), including Eucalyptus spp. and Corymbia spp. Its rapid expansion leads to new questions about pathways and routes that T. peregrinus used to invade other continents and countries. We used mtDNA to characterize specimens of T. peregrinus collected from 10 countries where this species has become established, including six recently invaded countries: Chile, Israel, Mexico, Paraguay, Portugal, and the United States of America. We then combined our mtDNA data with previous data available from South Africa, Australia, and Europe to construct a world mtDNA network of haplotypes. Haplotype A was the most common present in all specimens of sites sampled in the New World, Europe, and Israel, however from Australia second more frequently. Haplotype D was the most common one from native populations in Australia. Haplotype A difers from the two major haplotypes found in South Africa (D and G), confrming that at least two independent invasions occurred, one from Australia to South Africa, and the other one from Australia to South America (A). In conclusion, Haplotype A has an invasion success over many countries in the World. Additionally, analyzing data from our work and previous reports, it is possible to suggest some invasive routes of T. peregrinus to predict such events and support preventive control measures

    The nuclear collective motion

    Full text link
    Current developments in nuclear structure are discussed from a theoretical perspective. First, the progress in theoretical modeling of nuclei is reviewed. This is followed by the discussion of nuclear time scales, nuclear collective modes, and nuclear deformations. Some perspectives on nuclear structure research far from stability are given. Finally, interdisciplinary aspects of the nuclear many-body problem are outlined

    The Nabidae (Hemiptera: Heteroptera) of Israel and the Sinai Peninsula

    No full text
    Novoselsky, T., Freidberg, A., Dorchin, N., Meltzer, N., Kerzhner, I. (2014): The Nabidae (Hemiptera: Heteroptera) of Israel and the Sinai Peninsula. Zootaxa 3827 (4): 471-492, DOI: 10.11646/zootaxa.3827.4.

    The Nabidae (Hemiptera: Heteroptera) of Israel and the Sinai Peninsula

    No full text
    Novoselsky, T., Freidberg, A., Dorchin, N., Meltzer, N., Kerzhner, I. (2014): The Nabidae (Hemiptera: Heteroptera) of Israel and the Sinai Peninsula. Zootaxa 3827 (4): 471-492, DOI: http://dx.doi.org/10.11646/zootaxa.3827.4.
    corecore