16,516 research outputs found

    Gap anisotropy and universal pairing scale in a spin fluctuation model for cuprates

    Get PDF
    We consider the evolution of d-wave pairing, mediated by nearly critical spin fluctuations, with the coupling strength. We show that the onset temperature for pairing, T*, smoothly evolves between weak and strong coupling, passing through a broad maximum at intermediate coupling. At strong coupling, T* is of order the magnetic exchange energy J. We argue that for all couplings, pairing is confined to the vicinity of the Fermi surface. We also find that thermal spin fluctuations only modestly reduce T*, even at criticality, but they substantially smooth the gap anisotropy. The latter evolves with coupling, being the largest at weak coupling.Comment: 5 pages, 4 figure

    Odd Parity and Line Nodes in Heavy Fermion Superconductors

    Full text link
    Group theory arguments have demonstrated that a general odd parity order parameter cannot have line nodes in the presence of spin-orbit coupling. In this paper, it is shown that these arguments do not hold on the kz=π/ck_z = \pi/c zone face of a hexagonal close packed lattice. In particular, three of the six odd parity representations vanish identically on this face. This has potential relevance to the heavy fermion superconductor UPt3UPt_3.Comment: 5 pages, revte

    The Temperature Evolution of the Spectral Peak in High Temperature Superconductors

    Full text link
    Recent photoemission data in the high temperature cuprate superconductor Bi2212 have been interpreted in terms of a sharp spectral peak with a temperature independent lifetime, whose weight strongly decreases upon heating. By a detailed analysis of the data, we are able to extract the temperature dependence of the electron self-energy, and demonstrate that this intepretation is misleading. Rather, the spectral peak loses its integrity above Tc due to a large reduction in the electron lifetime.Comment: 5 pages, revtex, 4 encapsulated postscript figure

    Protein kinase C modulates the activity of a cloned gamma-aminobutyric acid transporter expressed in Xenopus oocytes via regulated subcellular redistribution of the transporter

    Get PDF
    We report that activators and inhibitors of protein kinase C (PKC) and protein phosphatases regulate the activity of a cloned rat brain gamma- aminobutyric acid (GABA) transporter (GAT1) expressed in Xenopus oocytes. Four compounds known to activate PKC increased GABA uptake 2- 3.5-fold over basal control levels. Inhibition of PKC by bisindolylmaleimide reduced basal GABA uptake 80% and blocked the phorbol 12-myristate 13-acetate (PMA)-induced stimulation of transport. Okadaic acid, a protein phosphatase inhibitor, stimulated transport 2.5- fold; a 4-fold increase in GABA uptake occurred when oocytes were treated with cyclosporin A, a specific inhibitor of protein phosphatase 2B. Modulation resulted in changes to Vmax but not to Km and was influenced by the functional expression level of the transporter protein; as expression level increased, the ability to up-regulate transporter activity decreased. Down-regulation of transporter activity was independent of expression level. Modulation did not occur through phosphorylation of the three consensus PKC sites predicted by the primary protein sequence since their removal had no effect on the susceptibility of the transporter to modulation by PMA or bisindolylmaleimide. Subcellular fractionation of oocyte membranes demonstrated that under basal level conditions, the majority of GAT1 was targeted to a cytoplasmic compartment corresponding to the trans- Golgi or low density vesicles. Stimulation of PKC with PMA resulted in a translocation of transporters from this compartment to the plasma membrane. At higher expression levels of GAT1 protein, a larger portion of GAT1 was found on the plasma membrane during basal level conditions and treatment with bisindolylmaleimide resulted in removal of these transporters from the plasma membrane. At expression levels demonstrated to be resistant to modulation by PMA, PMA-treatment still resulted in translocation of transporters from the cytoplasm to the plasma membrane. Thus, the inability of PMA to increase uptake at high expression of the GAT1 protein is due to saturation at a step subsequent to translocation. These findings 1) demonstrate the presence of a novel regulated secretory pathway in oocytes and 2) suggest a modulatory mechanism for neurotransmitter transporters that could have significant effects upon synaptic function

    Hot Jupiters in binary star systems

    Full text link
    Radial velocity surveys find Jupiter mass planets with semi-major axes a less than 0.1 AU around ~1% of solar-type stars; counting planets with aa as large as 5 AU, the fraction of stars having planets reaches ~ 10% {Marcy,Butler}. An examination of the distribution of semi-major axes shows that there is a clear excess of planets with orbital periods around 3 or 4 days, corresponding to a~0.03$ AU, with a sharp cutoff at shorter periods (see Figure 1). It is believed that Jupiter mass planets form at large distances from their parent stars; some fraction then migrate in to produce the short period objects. We argue that a significant fraction of the `hot Jupiters' (a<0.1 AU) may arise in binary star systems in which the orbit of the binary is highly inclined to the orbit of the planet. Mutual torques between the two orbits drive down the minimum separation or periapse r_p between the planet and its host star (the Kozai mechanism). This periapse collapse is halted when tidal friction on the planet circularizes the orbit faster than Kozai torque can excite it. The same friction then circularizes the planet orbit, producing hot Jupiters with the peak of the semimajor axis distribution lying around 3 days. For the observed distributions of binary separation, eccentricity and mass ratio, roughly 2.5% of planets with initial semimajor axis a_p ~ 5au will migrate to within 0.1au of their parent star. Kozai migration could account for 10% or more of the observed hot Jupiters.Comment: accepted to ApJ main journal, added one figure and expanded discussion

    Chain configurations in light nuclei

    Get PDF
    The model of nuclear matter built from alpha-particles is proposed. The strong deformed shape for doubly even N=Z nuclides from carbon to magnesium has been determined according to this model. In this paper we undertake very simple approach, which assumes the existence of low lying chain configurations.Comment: 6 pages, 5 figure

    Temperature-dependent quantum pair potentials and their application to dense partially ionized hydrogen plasmas

    Full text link
    Extending our previous work \cite{filinov-etal.jpa03ik} we present a detailed discussion of accuracy and practical applications of finite-temperature pseudopotentials for two-component Coulomb systems. Different pseudopotentials are discussed: i) the diagonal Kelbg potential, ii) the off-diagonal Kelbg potential iii) the {\em improved} diagonal Kelbg potential, iv) an effective potential obtained with the Feynman-Kleinert variational principle v) the ``exact'' quantum pair potential derived from the two-particle density matrix. For the {\em improved} diagonal Kelbg potential a simple temperature dependent fit is derived which accurately reproduces the ``exact'' pair potential in the whole temperature range. The derived pseudopotentials are then used in path integral Monte Carlo (PIMC) and molecular dynamics (MD) simulations to obtain thermodynamical properties of strongly coupled hydrogen. It is demonstrated that classical MD simulations with spin-dependent interaction potentials for the electrons allow for an accurate description of the internal energy of hydrogen in the difficult regime of partial ionization down to the temperatures of about 6000060 000 K. Finally, we point out an interesting relation between the quantum potentials and effective potentials used in density functional theory.Comment: 18 pages, 11 figure

    Spin-memory loss at Co/Ru interfaces

    Full text link
    We have determined the spin-memory-loss parameter, δCo/Ru\delta_{Co/Ru}, by measuring the transmission of spin-triplet and spin-singlet Cooper pairs across Co/Ru interfaces in Josephson junctions and by Current-Perpendicular-to-Plane Giant Magnetoresistance (CPP-GMR) techniques. The probability of spin-memory loss at the Co/Ru interface is (1exp(δCo/Ru))(1-exp(-\delta_{Co/Ru})). From the CPP-MR, we obtain δCo/Ru=0.340.02+0.04\delta_{Co/Ru} = 0.34^{+0.04}_{-0.02} that is in good agreement with δCo/Ru=0.35±0.08\delta_{Co/Ru} = 0.35 \pm 0.08 obtained from spin-triplet transmission. For spin-singlet transmission, we have δCo/Ru=0.64±0.05\delta_{Co/Ru} = 0.64 \pm 0.05 that is different from that obtained from CPP-GMR and spin-triplet transmission. The source of this difference is not understood.Comment: 9 pages, 9 figure

    Differential coupling of G protein alpha subunits to seven-helix receptors expressed in Xenopus oocytes

    Get PDF
    Xenopus oocytes were used to examine the coupling of the serotonin 1c (5HT1c) and thyrotropin-releasing hormone (TRH) receptors to both endogenous and heterologously expressed G protein alpha subunits. Expression of either G protein-coupled receptor resulted in agonist- induced, Ca(2+)-activated Cl- currents that were measured using a two- electrode voltage clamp. 5HT-induced Cl- currents were reduced 80% by incubating the injected oocytes with pertussis toxin (PTX) and inhibited 50-65% by injection of antisense oligonucleotides to the PTX- sensitive Go alpha subunit. TRH-induced Cl- currents were reduced only 20% by PTX treatment but were inhibited 60% by injection of antisense oligonucleotides to the PTX-insensitive Gq alpha subunit. Injection of antisense oligonucleotides to a novel Xenopus phospholipase C-beta inhibited the 5HT1c (and Go)-induced Cl- current with little effect on the TRH (and Gq)-induced current. These results suggest that receptor- activated Go and Gq interact with different effectors, most likely different isoforms of phospholipase C-beta. Co-expression of each receptor with seven different mammalian G protein alpha subunit cRNAs (Goa, Gob, Gq, G11, Gs, Golf, and Gt) was also examined. Co-expression of either receptor with the first four of these G alpha subunits resulted in a maximum 4-6-fold increase in Cl- currents; the increase depended on the amount of G alpha subunit cRNA injected. This increase was blocked by PTX for G alpha oa and G alpha ob co-expression but not for G alpha q or G alpha 11 co-expression. Co-expression of either receptor with Gs, Golf, or Gt had no effect on Ca(2+)-activated Cl- currents; furthermore, co-expression with Gs or Golf also failed to reveal 5HT- or TRH-induced changes in adenylyl cyclase as assessed by activation of the cystic fibrosis transmembrane conductance regulator Cl- channel. These results indicate that in oocytes, the 5HT1c and TRH receptors do the following: 1) preferentially couple to PTX-sensitive (Go) and PTX-insensitive (Gq) G proteins and that these G proteins act on different effectors, 2) couple within the same cell type to several different heterologously expressed G protein alpha subunits to activate the oocyte's endogenous Cl- current, and 3) fail to couple to G protein alpha subunits that activate cAMP or phosphodiesterase

    The modulated spin liquid: a new paradigm for URu2_2Si2_2

    Full text link
    We argue that near a Kondo breakdown critical point, a spin liquid with spatial modulations can form. Unlike its uniform counterpart, we find that this occurs via a second order phase transition. The amount of entropy quenched when ordering is of the same magnitude as for an antiferromagnet. Moreover, the two states are competitive, and at low temperatures are separated by a first order phase transition. The modulated spin liquid we find breaks Z4Z_4 symmetry, as recently seen in the hidden order phase of URu2_2Si2_2. Based on this, we suggest that the modulated spin liquid is a viable candidate for this unique phase of matter.Comment: 4 pages, 2 figure
    corecore