5,562 research outputs found

    Numerical and approximate analytical results for the frustrated spin-1/2 quantum spin chain

    Full text link
    We study the T=0T=0 frustrated phase of the 1D1D quantum spin-12\frac 12 system with nearest-neighbour and next-nearest-neighbour isotropic exchange known as the Majumdar-Ghosh Hamiltonian. We first apply the coupled-cluster method of quantum many-body theory based on a spiral model state to obtain the ground state energy and the pitch angle. These results are compared with accurate numerical results using the density matrix renormalisation group method, which also gives the correlation functions. We also investigate the periodicity of the phase using the Marshall sign criterion. We discuss particularly the behaviour close to the phase transitions at each end of the frustrated phase.Comment: 17 pages, Standard Latex File + 7 PostScript figures in separate file. Figures also can also be requested from [email protected]

    Acceleressence: Dark Energy from a Phase Transition at the Seesaw Scale

    Full text link
    Simple models are constructed for "acceleressence" dark energy: the latent heat of a phase transition occurring in a hidden sector governed by the seesaw mass scale v^2/M_Pl, where v is the electroweak scale and M_Pl the gravitational mass scale. In our models, the seesaw scale is stabilized by supersymmetry, implying that the LHC must discover superpartners with a spectrum that reflects a low scale of fundamental supersymmetry breaking. Newtonian gravity may be modified by effects arising from the exchange of fields in the acceleressence sector whose Compton wavelengths are typically of order the millimeter scale. There are two classes of models. In the first class the universe is presently in a metastable vacuum and will continue to inflate until tunneling processes eventually induce a first order transition. In the simplest such model, the range of the new force is bounded to be larger than 25 microns in the absence of fine-tuning of parameters, and for couplings of order unity it is expected to be \approx 100 microns. In the second class of models thermal effects maintain the present vacuum energy of the universe, but on further cooling, the universe will "soon" smoothly relax to a matter dominated era. In this case, the range of the new force is also expected to be of order the millimeter scale or larger, although its strength is uncertain. A firm prediction of this class of models is the existence of additional energy density in radiation at the eV era, which can potentially be probed in precision measurements of the cosmic microwave background. An interesting possibility is that the transition towards a matter dominated era has occurred in the very recent past, with the consequence that the universe is currently decelerating.Comment: 10 pages, references adde

    Report of the Subgroup on Alternative Models and New Ideas

    Get PDF
    We summarize some of the work done by the P3 subgroup on Alternative Models and New Ideas. The working group covered a broad range of topics including a constrained Standard Model from an extra dimension, a discussion of recent ideas addressing the strong CP problem, searches for doubly charged higgs bosons in e gamma collisions, and an update on discovery limits for extra neutral gauge bosons at hadron colliders. The breadth of topics reflects the many ideas and approaches to physics beyond the Standard Model.Comment: 10 pages, 5 figures. Contributed to the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), Snowmass, Colorado, 30 Jun - 21 Jul 200

    Possible Pairing Symmetry of Three-dimensional Superconductor UPt3_3 -- Analysis Based on a Microscopic Calculation --

    Full text link
    Stimulated by the anomalous superconducting properties of UPt3_3, we investigate the pairing symmetry and the transition temperature in the two-dimensional(2D) and three-dimensional(3D) hexagonal Hubbard model. We solve the Eliashberg equation using the third order perturbation theory with respect to the on-site repulsion UU. As results of the 2D calculation, we obtain distinct two types of stable spin-triplet pairing states. One is the ff-wave(B1_1) pairing around n=1.2n = 1.2 and in a small UU region, which is caused by the ferromagnetic fluctuation. Then, the other is the pxp_x(or pyp_y)-wave(E1_1) pairing in large UU region far from the half-filling (n=1n = 1) which is caused by the vertex corrections only. However, we find that the former ff-wave pairing is destroyed by introduced 3D dispersion. This is because the 3D dispersion breaks the favorable structures for the ff-wave pairing such as the van Hove singularities and the small pocket structures. Thus, we conclude that the ferromagnetic fluctuation mediated spin-triplet state can not explain the superconductivity of UPt3_3. We also study the case of the pairing symmetry with a polar gap. This pzp_z-wave(A1_1) is stabilized by the large hopping integral along c-axis tzt_z. It is nearly degenerate with the suppressed pxp_x(or pyp_y)-wave(E1_1) in the best fitting parameter region to UPt3_3 (1.3tz1.51.3 \le t_z \le 1.5). These two p-wave pairing states exist in the region far from the half-filling, in which the vertex correction terms play crucial roles like the case in Sr2_2RuO4_4.Comment: 15 pages, 12 figure

    Monte Carlo study of the antiferromagnetic three-state Potts model with staggered polarization field on the square lattice

    Full text link
    Using the Wang-Landau Monte Carlo method, we study the antiferromagnetic (AF) three-state Potts model with a staggered polarization field on the square lattice. We obtain two phase transitions; one belongs to the ferromagnetic three-state Potts universality class, and the other to the Ising universality class. The phase diagram obtained is quantitatively consistent with the transfer matrix calculation. The Ising transition in the large nearest-neighbor interaction limit has been made clear by the detailed analysis of the energy density of states.Comment: accepted for publication in J. Phys.

    Mechanism of CDW-SDW Transition in One Dimension

    Full text link
    The phase transition between charge- and spin-density-wave (CDW, SDW) phases is studied in the one-dimensional extended Hubbard model at half-filling. We discuss whether the transition can be described by the Gaussian and the spin-gap transitions under charge-spin separation, or by a direct CDW-SDW transition. We determine these phase boundaries by level crossings of excitation spectra which are identified according to discrete symmetries of wave functions. We conclude that the Gaussian and the spin-gap transitions take place separately from weak- to intermediate-coupling region. This means that the third phase exists between the CDW and the SDW states. Our results are also consistent with those of the strong-coupling perturbative expansion and of the direct evaluation of order parameters.Comment: 5 pages(REVTeX), 5 figures(EPS), 1 table, also available from http://wwwsoc.nacsis.ac.jp/jps/jpsj/1999/p68a/p68a42/p68a42h/p68a42h.htm

    Ocorrência e caracterização de bactérias isoladas de nódulos de amendoinzeiro (Arachis hypogaea L.) em solos paranaenses, Brasil.

    Get PDF
    RESUMO: O objetivo deste trabalho foi avaliar a ocorrência e caracterizar morfofisiologicamente e geneticamente bactérias isoladas de nódulos de amendoinzeiro (Arachis hypogaea L.), em solos paranaenses, Brasil. Em amostras de 36 municípios representativos do estado Paraná foi observada nodulação do amendoim em 84,4%, independente se em áreas cultivadas, ou em florestas. Nos testes de caracterização morfofisiológica de 44 estirpes autenticadas, 75% das estirpes apresentaram taxa de crescimento rápido em meio de cultura com manitol; 25 acidificaram o meio, cinco alcalinizaram e 14 não resultaram em modificação do pH. A capacidade de produzir sideróforos foi observada em 43% das estirpes e 16% foram capazes de solubilizar fosfato de cálcio em meio de cultura. O sequenciamento do gene 16S rRNA mostrou a formação de três principais grupos, correspondentes a três filos: Alfaproteobacteria, Betaproteobacteria e Firmicutes. O gênero com maior ocorrência foi o Bacillus

    Towards Autopoietic Computing

    Full text link
    A key challenge in modern computing is to develop systems that address complex, dynamic problems in a scalable and efficient way, because the increasing complexity of software makes designing and maintaining efficient and flexible systems increasingly difficult. Biological systems are thought to possess robust, scalable processing paradigms that can automatically manage complex, dynamic problem spaces, possessing several properties that may be useful in computer systems. The biological properties of self-organisation, self-replication, self-management, and scalability are addressed in an interesting way by autopoiesis, a descriptive theory of the cell founded on the concept of a system's circular organisation to define its boundary with its environment. In this paper, therefore, we review the main concepts of autopoiesis and then discuss how they could be related to fundamental concepts and theories of computation. The paper is conceptual in nature and the emphasis is on the review of other people's work in this area as part of a longer-term strategy to develop a formal theory of autopoietic computing.Comment: 10 Pages, 3 figure

    Flavored Gauge-Mediation

    Full text link
    The messengers of Gauge-Mediation Models can couple to standard-model matter fields through renormalizable superpotential couplings. These matter-messenger couplings generate generation-dependent sfermion masses and are therefore usually forbidden by discrete symmetries. However, the non-trivial structure of the standard-model Yukawa couplings hints at some underlying flavor theory, which would necessarily control the sizes of the matter-messenger couplings as well. Thus for example, if the doublet messenger and the Higgs have the same properties under the flavor theory, the resulting messenger-lepton couplings are parametrically of the same order as the lepton Yukawas, so that slepton mass-splittings are similar to those of minimally-flavor-violating models and therefore satisfy bounds on flavor-violation, with, however, slepton mixings that are potentially large. Assuming that fermion masses are explained by a flavor symmetry, we construct viable and natural models with messenger-lepton couplings controlled by the flavor symmetry. The resulting slepton spectra are unusual and interesting, with slepton mass-splittings and mixings that may be probed at the LHC. In particular, since the new contributions are typically negative, and since they are often larger for the first- and second-generation sleptons, some of these examples have the selectron or the smuon as the lightest slepton, with mass splittings of a few to tens of GeV.Comment: 16 pages v2: Explicit expressions (which are not needed in the analysis) for the pure Yukawa contributions removed. There was an error in some of these expressions in v1. References adde

    Interactions of Heavy Hadrons using Regge Phenomenology and the Quark Gluon String Model

    Full text link
    The search for stable heavy exotic hadrons is a promising way to observe new physics processes at collider experiments. The discovery potential for such particles can be enhanced or suppressed by their interactions with detector material. This paper describes a model for the interactions in matter of stable hadrons containing an exotic quark of charges ±1/3e\pm {1/3}e or ±2/3e\pm {2/3}e using Regge phenomenology and the Quark Gluon String Model. The influence of such interactions on searches at the LHC is also discussed
    corecore