767 research outputs found

    Low-temperature phases in Pb(Zr0.52Ti0.48)O3: A neutron powder diffraction study

    Get PDF
    A neutron powder diffraction study has been carried out on Pb(Zr0.52Ti0.48)O3 in order to resolve an ongoing controversy about the nature of the low-temperature structure of this strongly-piezoelectric and technologically-important material. The results of a detailed and systematic Rietveld analysis at 20 K are consistent with the coexistence of two monoclinic phases having space groups Cm and Ic respectively, in the approximate ratio 4:1, and thus support the findings of a recent electron diffraction study by Noheda et al. [Phys. Rev. B 66, 060103 (2002)]. The results are compared to those of two recent conflicting neutron powder diffraction studies of materials of the same nominal composition by Hatch et al. [Phys. Rev. B 65, 212101 (2002)] and Frantti et al. [Phys. Rev. B 66, 064108 (2002)].Comment: RevTex4, 16 pages, 6 color figure

    Symmetry of high-piezoelectric Pb-based complex perovskites at the morphotropic phase boundary I. Neutron diffraction study on Pb(Zn1/3Nb2/3)O3 -9%PbTiO3

    Full text link
    The symmetry was examined using neutron diffraction method on Pb(Zn1/3Nb2/3)O3 -9%PbTiO3 (PZN/9PT) which has a composition at the morphotropic phase boundary (MPB) between Pb(Zn1/3Nb2/3)O3 and PbTiO3. The results were compared with those of other specimens with same composition but with different prehistory. The equilibrium state of all examined specimens is not the mixture of rhombohedral and tetragonal phases of the end members but exists in a new polarization rotation line Mc# (orthorhombic-monoclinic line). Among examined specimens, one exhibited tetragonal symmetry at room temperature but recovered monoclinic phase after a cooling and heating cycle

    Symmetry of high-piezoelectric Pb-based complex perovskites at the morphotropic phase boundary II. Theoretical treatment

    Full text link
    The structural characteristics of the perovskite- based ferroelectric Pb(Zn1/3Nb2/3)O3-9%PbTiO3 at the morphotropic phase boundary (MPB) region (x≃0.09) have been analyzed. The analysis is based on the symmetry adapted free energy functions under the assumption that the total polarization and the unit cell volume are conserved during the transformations between various morphotropic phases. Overall features of the relationships between the observed lattice constants at various conditions have been consistently explained. The origin of the anomalous physical properties at MPB is discussed

    High pressure phases in highly piezoelectric Pb(Zr0.52Ti0.48)O3

    Get PDF
    Two novel room-temperature phase transitions are observed, via synchrotron x-ray diffraction and Raman spectroscopy, in the Pb(Zr0.52Ti0.48)O3 alloy under hydrostatic pressures up to 16 GPa. A monoclinic (M)-to-rhombohedral (R1) phase transition takes place around 2-3 GPa, while this R1 phase transforms into another rhombohedral phase, R2, at about 6-7 GPa. First-principles calculations assign the R3m and R3c symmetry to R1 and R2, respectively, and reveal that R2 acts as a pressure-induced structural bridge between the polar R3m and a predicted antiferrodistortive R-3c phase.Comment: REVTeX, 4 pages with 3 figures embedded. Figs 1 and 3 in colo

    Low-Symmetry Monoclinic Phases and Polarization Rotation Path Mediated By Epitaxial Strain in Multiferroic BiFeO3 Thin Films

    Full text link
    A morphotropic phase boundary driven by epitaxial strain has been observed in a lead-free multiferroic BiFeO3 thin films and the strain-driven phase transitions were widely reported to be iso-symmetric Cc-Cc ones by recent works. In this paper, we suggest that the tetragonal-like BiFeO3 phase identified in epitaxial films on (001) LaAlO3 single crystal substrates is monoclinic MC. This MC phase is different from MA type monoclinic phase reported in BiFeO3 films grown on low mismatch substrates, such as SrTiO3. This is confirmed not only by synchrotron x-ray studies but also by piezoresponse force microscopy measurements. The polarization vectors of the tetragonal-like phase lie in the (100) plane, not the (110) plane as previously reported. A phenomenological analysis was proposed to explain the formation of MC Phase. Such a low symmetry MC phase, with its linkage to MA phase and the multiphase coexistence open an avenue for large piezoelectric response in BiFeO3 films and shed light on a complete understanding towards possible polarization rotation paths and enhanced multiferroicity in BiFeO3 films mediated by epitaxial strain. This work may also aid the understanding of developing new lead-free strain-driven morphotropic phase boundary in other ferroic systems.Comment: 22 pages,Submitted to Advanced Functional Materials on Sep,7,2010, accepted on Oct,27,201

    Low temperature superlattice in monoclinic PZT

    Get PDF
    TEM has shown that the strongly piezoelectric material Pb(Zr0.52Ti0.48)O3 separates into two phases at low temperatures. The majority phase is the monoclinic phase previously found by x-ray diffraction. The minority phase, with a nanoscale coherence length, is a slightly distorted variant of the first resulting from the anti-phase rotation of the oxygen octahedra about [111]. This work clears up a recent controversy about the origin of superlattice peaks in these materials, and supports recent theoretical results predicting the coexistence of ferroelectric and rotational instabilities.Comment: REVTeX4, 4 eps figures embedded. JPG version of figs. 2&4 is also include
    corecore