704 research outputs found

    Why a Single-Star Model Cannot Explain the Bipolar Nebula of Eta Carinae

    Full text link
    I examine the angular momentum evolution during the 1837-1856 Great Eruption of the massive star Eta Carinae. I find that the new estimate of the mass blown during that eruption implies that the envelope of Eta Car substantially spun-down during the 20 years eruption. Single-star models, most of which require the envelope to rotate close to the break-up velocity, cannot account for the bipolar nebula (the Homunculus) formed from matter expelled in that eruption. The kinetic energy and momentum of the Homunculus further constrains single-star models. I discuss how Eta Car can fit into a unified model for the formation of bipolar lobes where two oppositely ejected jets inflate two lobes (or bubbles). These jets are blown by an accretion disk, which requires stellar companions in the case of bipolar nebulae around stellar objects.Comment: ApJ, in press. New references and segments were adde

    A Possible Hidden Population of Spherical Planetary Nebulae

    Full text link
    We argue that relative to non-spherical planetary nebulae (PNs), spherical PNs are about an order of magnitude less likely to be detected, at distances of several kiloparsecs. Noting the structure similarity of halos around non-spherical PNs to that of observed spherical PNs, we assume that most unobserved spherical PNs are also similar in structure to the spherical halos around non-spherical PNs. The fraction of non-spherical PNs with detected spherical halos around them, taken from a recent study, leads us to the claim of a large (relative to that of non-spherical PNs) hidden population of spherical PNs in the visible band. Building a toy model for the luminosity evolution of PNs, we show that the claimed detection fraction of spherical PNs based on halos around non-spherical PNs, is compatible with observational sensitivities. We use this result to update earlier studies on the different PN shaping routes in the binary model. We estimate that ~30% of all PNs are spherical, namely, their progenitors did not interact with any binary companion. This fraction is to be compared with the ~3% fraction of observed spherical PNs among all observed PNs. From all PNs, ~15% owe their moderate elliptical shape to the interaction of their progenitors with planets, while \~55% of all PNs owe their elliptical or bipolar shapes to the interaction of their progenitors with stellar companions.Comment: AJ, in pres

    The "Twin Jet" Planetary Nebula M2-9

    Full text link
    We present a model for the structure, temporal behavior, and evolutionary status of the bipolar nebula M2-9. According to this model the system consists of an AGB or post-AGB star and a hot white dwarf companion, with an orbital period of about 120 years. The white dwarf has undergone a symbiotic nova eruption about 1200 years ago, followed by a supersoft x-ray source phase. The positional shift of the bright knots in the inner nebular lobes is explained in terms of a revolving ionizing source. We show that the interaction between the slow, AGB star's wind, and a collimated fast wind from the white dwarf clears a path for the ionizing radiation in one direction, while the radiation is attenuated in others. This results in the mirror-symmetric (as opposed to the more common point-symmetric) shift in the knots. We show that M2-9 provides an important evolutionary link among planetary nebulae with binary central stars, symbiotic systems, and supersoft x-ray sources.Comment: 13 pages + 2 figures. Submitted to Ap

    On the Luminosities and Temperatures of Extended X-ray Emission from Planetary Nebulae

    Get PDF
    We examine mechanisms that may explain the luminosities and relatively low temperatures of extended X-ray emission in planetary nebulae. By building a simple flow structure for the wind from the central star during the proto, and early, planetary nebulae phase, we estimate the temperature of the X-ray emitting gas and its total X-ray luminosity. We conclude that in order to account for the X-ray temperature and luminosity, both the evolution of the wind from the central star and the adiabatic cooling of the post-shocked wind's material must be considered. The X-ray emitting gas results mainly from shocked wind segments that were expelled during the early planetary nebulae phase, when the wind speed was moderate. Alternatively, the X-ray emitting gas may result from a collimated fast wind blown by a companion to the central star. Heat conduction and mixing between hot and cool regions are likely to occur in some cases and may determine the detailed X-ray morphology of a nebula, but are not required to explain the basic properties of the X-ray emitting gas.Comment: ApJ, submitted; 16 page

    Magnetic Flares on Asymptotic Giant Branch Stars

    Get PDF
    We investigate the consequences of magnetic flares on the surface of asymptotic giant branch (AGB) and similar stars. In contrast to the solar wind, in the winds of AGB stars the gas cooling time is much shorter than the outflow time. As a result, we predict that energetic flaring will not inhibit, and may even enhance, dust formation around AGB stars. If magnetic flares do occur around such stars, we expect some AGB stars to exhibit X-ray emission; indeed certain systems including AGB stars, such as Mira, have been detected in X-rays. However, in these cases, it is difficult to distinguish between potential AGB star X-ray emission and, e.g., X-ray emission from the vicinity of a binary companion. Analysis of an archival ROSAT X-ray spectrum of the Mira system suggests an intrinsic X-ray luminosity 2x10^{29} erg/sec and temperature 10^7 K. These modeling results suggest that magnetic activity, either on the AGB star (Mira A) or on its nearby companion (Mira B), is the source of the X-rays, but do not rule out the possibility that the X-rays are generated by an accretion disk around Mira B.Comment: ApJ, Accepted; revised version of astro-ph/020923

    An impairment in sniffing contributes to the olfactory impairment in Parkinson's disease

    Get PDF
    Although the presence of an olfactory impairment in Parkinson's disease (PD) has been recognized for 25 years, its cause remains unclear. Here we suggest a contributing factor to this impairment, namely, that PD impairs active sniffing of odorants. We tested 10 men and 10 women with clinically typical PD, and 20 age- and gender-matched healthy controls, in four olfactory tasks: (i) the University of Pennsylvania smell identification test; (ii and iii) detection threshold tests for the odorants vanillin and propionic acid; and (iv) a two-alternative forced-choice detection paradigm during which sniff parameters (airflow peak rate, mean rate, volume, and duration) were recorded with a pneomatotachograph-coupled spirometer. An additional experiment tested the effect of intentionally increasing sniff vigor on olfactory performance in 20 additional patients. PD patients were significantly impaired in olfactory identification (P < 0.0001) and detection (P < 0.007). As predicted, PD patients were also significantly impaired at sniffing, demonstrating significantly reduced sniff airflow rate (P < 0.01) and volume (P < 0.002). Furthermore, a patient's ability to sniff predicted his or her performance on olfactory tasks, i.e., the more poorly patients sniffed, the worse their performance on olfaction tests (P < 0.009). Finally, increasing sniff vigor improved olfactory performance in those patients whose baseline performance had been poorest (P < 0.05). These findings implicate a sniffing impairment as a component of the olfactory impairment in PD and further depict sniffing as an important component of human olfaction

    Welfare and Revenue Guarantees for Competitive Bundling Equilibrium

    Full text link
    We study equilibria of markets with mm heterogeneous indivisible goods and nn consumers with combinatorial preferences. It is well known that a competitive equilibrium is not guaranteed to exist when valuations are not gross substitutes. Given the widespread use of bundling in real-life markets, we study its role as a stabilizing and coordinating device by considering the notion of \emph{competitive bundling equilibrium}: a competitive equilibrium over the market induced by partitioning the goods for sale into fixed bundles. Compared to other equilibrium concepts involving bundles, this notion has the advantage of simulatneous succinctness (O(m)O(m) prices) and market clearance. Our first set of results concern welfare guarantees. We show that in markets where consumers care only about the number of goods they receive (known as multi-unit or homogeneous markets), even in the presence of complementarities, there always exists a competitive bundling equilibrium that guarantees a logarithmic fraction of the optimal welfare, and this guarantee is tight. We also establish non-trivial welfare guarantees for general markets, two-consumer markets, and markets where the consumer valuations are additive up to a fixed budget (budget-additive). Our second set of results concern revenue guarantees. Motivated by the fact that the revenue extracted in a standard competitive equilibrium may be zero (even with simple unit-demand consumers), we show that for natural subclasses of gross substitutes valuations, there always exists a competitive bundling equilibrium that extracts a logarithmic fraction of the optimal welfare, and this guarantee is tight. The notion of competitive bundling equilibrium can thus be useful even in markets which possess a standard competitive equilibrium
    • 

    corecore