16 research outputs found

    Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma

    Get PDF
    Copyright @ 2013 Macmillan Publishers Limited. This is the author's accepted manuscript. The final published article is available from the link below.Regulation of cell survival is a key part of the pathogenesis of multiple myeloma (MM). Jun N-terminal kinase (JNK) signaling has been implicated in MM pathogenesis, but its function is unclear. To elucidate the role of JNK in MM, we evaluated the specific functions of the two major JNK proteins, JNK1 and JNK2. We show here that JNK2 is constitutively activated in a panel of MM cell lines and primary tumors. Using loss-of-function studies, we demonstrate that JNK2 is required for the survival of myeloma cells and constitutively suppresses JNK1-mediated apoptosis by affecting expression of poly(ADP-ribose) polymerase (PARP)14, a key regulator of B-cell survival. Strikingly, we found that PARP14 is highly expressed in myeloma plasma cells and associated with disease progression and poor survival. Overexpression of PARP14 completely rescued myeloma cells from apoptosis induced by JNK2 knockdown, indicating that PARP14 is critically involved in JNK2-dependent survival. Mechanistically, PARP14 was found to promote the survival of myeloma cells by binding and inhibiting JNK1. Moreover, inhibition of PARP14 enhances the sensitization of MM cells to anti-myeloma agents. Our findings reveal a novel regulatory pathway in myeloma cells through which JNK2 signals cell survival via PARP14, and identify PARP14 as a potential therapeutic target in myeloma.Kay Kendall Leukemia Fund, NIH, Cancer Research UK, Italian Association for Cancer Research and the Foundation for Liver Research

    Salivary Secretory Immunoglobulin a secretion increases after 4-weeks ingestion of chlorella-derived multicomponent supplement in humans: a randomized cross over study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chlorella, a unicellular green alga that grows in fresh water, contains high levels of proteins, vitamins, minerals, and dietary fibers. Some studies have reported favorable immune function-related effects on biological secretions such as blood and breast milk in humans who have ingested a chlorella-derived multicomponent supplement. However, the effects of chlorella-derived supplement on mucosal immune functions remain unclear. The purpose of this study was to investigate whether chlorella ingestion increases the salivary secretory immunoglobulin A (SIgA) secretion in humans using a blind, randomized, crossover study design.</p> <p>Methods</p> <p>Fifteen men took 30 placebo and 30 chlorella tablets per day for 4 weeks separated by a 12-week washout period. Before and after each trial, saliva samples were collected from a sterile cotton ball that was chewed after overnight fasting. Salivary SIgA concentrations were measured using ELISA.</p> <p>Results</p> <p>Compliance rates for placebo and chlorella ingestions were 97.0 ± 1.0% and 95.3 ± 1.6%, respectively. No difference was observed in salivary SIgA concentrations before and after placebo ingestion (<it>P </it>= 0.38). However, salivary SIgA concentrations were significantly elevated after chlorella ingestion compared to baseline (<it>P </it>< 0.01). No trial × period interaction was identified for the saliva flow rates. Although the SIgA secretion rate was not affected by placebo ingestion (<it>P </it>= 0.36), it significantly increased after 4-week chlorella ingestion than before intake (<it>P </it>< 0.01).</p> <p>Conclusions</p> <p>These results suggest 4-week ingestion of a chlorella-derived multicomponent supplement increases salivary SIgA secretion and possibly improves mucosal immune function in humans.</p

    Breast cancer adaptive resistance: HER2 and cancer stem cell repopulation in a heterogeneous tumor society

    Get PDF

    Nanocomposites: synthesis, structure, properties and new application opportunities

    Full text link

    Chlorella intake attenuates reduced salivary SIgA secretion in <it>kendo</it> training camp participants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The green alga Chlorella contains high levels of proteins, vitamins, and minerals. We previously reported that a chlorella-derived multicomponent supplement increased the secretion rate of salivary secretory immunoglobulin A (SIgA) in humans. Here, we investigated whether intake of this chlorella-derived supplement attenuated the reduced salivary SIgA secretion rate during a <it>kendo</it> training camp.</p> <p>Methods</p> <p>Ten female <it>kendo</it> athletes participated in inter-university 6-day spring and 4-day summer camps. They were randomized into two groups; one took placebo tablets during the spring camp and chlorella tablets during the summer camp, while the other took chlorella tablets during the spring camp and placebo tablets during the summer camp. Subjects took these tablets starting 4 weeks before the camp until post-camp saliva sampling. Salivary SIgA concentrations were measured by ELISA.</p> <p>Results</p> <p>All subjects participated in nearly all training programs, and body-mass changes and subjective physical well-being scores during the camps were comparable between the groups. However, salivary SIgA secretion rate changes were different between these groups. Salivary SIgA secretion rates decreased during the camp in the placebo group (before vs. second, middle, and final day of camp, and after the camp: 146 ± 89 vs. 87 ± 56, 70 ± 45, 94 ± 58, and 116 ± 71 μg/min), whereas no such decreases were observed in the chlorella group (121 ± 53 vs. 113 ± 68, 98 ± 69,115 ± 80, and 128 ± 59 μg/min).</p> <p>Conclusion</p> <p>Our results suggest that a use of a chlorella-derived dietary supplement attenuates reduced salivary SIgA secretion during a training camp for a competitive sport.</p
    corecore