654 research outputs found

    The first biosimilar approved for the treatment of osteoporosis

    Get PDF
    To demonstrate the clinical comparability between RGB-10 (a biosimilar teriparatide) and the originator, a comparative pharmacokinetic trial was conducted. The study was successful in establishing bioequivalence. Marketing authorisation for RGB-10 (Terrosa®) was granted by the European Medicines Agency in 2017.Teriparatide, the first bone anabolic agent, is the biologically active fragment of human parathyroid hormone. The imminent patent expiry of the originator will open the door for biosimilars to enter the osteology market, thereby improving access to a highly effective, yet prohibitively expensive therapy.Subsequent to establishing comparability on the quality and non-clinical levels between RGB-10, a biosimilar teriparatide, and its reference product (Forsteo®), a randomised, double-blind, 2-way cross-over comparative study (duration: four days) was conducted in 54 healthy women (ages: 18 to 55 years) to demonstrate the pharmacokinetic/pharmacodynamic (PK/PD) equivalence and comparable safety of these products. Extents of exposure (AUC0-tlast) and peak exposure (Cmax), as measured by means of ELISA, were evaluated as co-primary PK endpoints, and serum calcium levels, as measured using standard automated techniques, were assessed for PD effects. Safety was monitored throughout the study.The 94.12% CIs for the ratio of the test to the reference treatments, used due to the two-stage design (85.20-98.60% and 85.51-99.52% for AUC0-tlast and Cmax, respectively), fell within the 80.00-125.00% acceptance range. The calcium PD parameters were essentially identical with geometric mean ratios (GMRs) of 99.93% and 99.87% for AUC and Cmax, respectively. Analysis of the safety data did not reveal any differences between RGB-10 and its reference.Based on the high level of similarity in the preclinical data and the results of this clinical study, marketing authorisation for RGB-10 (Terrosa®) was granted by the European Medicines Agency (EMA) in 2017

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON

    Survivin expression in in situ and invasive breast cancer relates to COX-2 expression and DCIS recurrence

    Get PDF
    In lung cancer cyclooxygenase-2 (COX-2) expression has been reported to stabilise survivin, an inhibitor of apoptosis (IAP) which prevents cell death by blocking activated caspases. COX-2 expression limits the ubiquitination of survivin, protecting it from degradation. To determine if COX-2 expression in breast cancer showed an association with survivin expression, we assessed the levels of each protein in ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC); relating expression patterns to recurrence of DCIS after surgery. Patterns of COX-2 and survivin expression were determined by intensity-graded immunohistochemistry of the primary tumours. Patients with DCIS (n=161) which had either recurred (n=47) or shown no evidence of recurrence (n=114) 5 years following primary surgery were studied. These were compared to 58 cases of IBC. Survivin was expressed in the cytoplasm of 59% of DCIS and 17% of IBC. High levels of both cytoplasmic survivin and COX-2 expression significantly correlated to DCIS recurrence. COX-2 expression was present in 72% of DCIS, and levels of expression positively correlated with cytoplasmic survivin expression in DCIS and invasive disease. The majority of DCIS that recurred expressed both proteins (69%) vs 39% nonrecurrent. Recurrence was not seen in DCIS lacking both proteins at 5 years (P=0.001). Expression of the IAP survivin is increased in DCIS and correlates closely with COX-2 expression. Increased expression of IAP, (leading to reduced apoptosis) may explain the effect of COX-2 in increasing recurrence of DCIS after surgical treatment

    1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser

    Get PDF
    High pulse repetition rate (≥10 GHz) diode-pumped solid-state lasers, modelocked using semiconductor saturable absorber mirrors (SESAMs) are emerging as an enabling technology for high data rate coherent communication systems owing to their low noise and pulse-to-pulse optical phase-coherence. Quantum dot (QD) based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the development of an epitaxial process for the realization of high optical quality 1.55 µm In(Ga)As QDs on GaAs substrates, their incorporation into a SESAM, and the realization of the first 10 GHz repetition rate QD-SESAM modelocked laser at 1.55 µm, exhibiting ∼2 ps pulse width from an Er-doped glass oscillator (ERGO). With a high areal dot density and strong light emission, this QD structure is a very promising candidate for many other applications, such as laser diodes, optical amplifiers, non-linear and photonic crystal based devices

    Identifying Hubs in Protein Interaction Networks

    Get PDF
    In spite of the scale-free degree distribution that characterizes most protein interaction networks (PINs), it is common to define an ad hoc degree scale that defines "hub" proteins having special topological and functional significance. This raises the concern that some conclusions on the functional significance of proteins based on network properties may not be robust.In this paper we present three objective methods to define hub proteins in PINs: one is a purely topological method and two others are based on gene expression and function. By applying these methods to four distinct PINs, we examine the extent of agreement among these methods and implications of these results on network construction.We find that the methods agree well for networks that contain a balance between error-free and unbiased interactions, indicating that the hub concept is meaningful for such networks

    IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses.

    Full text link
    Viruses represent the most abundant life forms on the planet. Recent experimental and computational improvements have led to a dramatic increase in the number of viral genome sequences identified primarily from metagenomic samples. As a result of the expanding catalog of metagenomic viral sequences, there exists a need for a comprehensive computational platform integrating all these sequences with associated metadata and analytical tools. Here we present IMG/VR (https://img.jgi.doe.gov/vr/), the largest publicly available database of 3908 isolate reference DNA viruses with 264 413 computationally identified viral contigs from >6000 ecologically diverse metagenomic samples. Approximately half of the viral contigs are grouped into genetically distinct quasi-species clusters. Microbial hosts are predicted for 20 000 viral sequences, revealing nine microbial phyla previously unreported to be infected by viruses. Viral sequences can be queried using a variety of associated metadata, including habitat type and geographic location of the samples, or taxonomic classification according to hallmark viral genes. IMG/VR has a user-friendly interface that allows users to interrogate all integrated data and interact by comparing with external sequences, thus serving as an essential resource in the viral genomics community

    Hubs with Network Motifs Organize Modularity Dynamically in the Protein-Protein Interaction Network of Yeast

    Get PDF
    BACKGROUND: It has been recognized that modular organization pervades biological complexity. Based on network analysis, 'party hubs' and 'date hubs' were proposed to understand the basic principle of module organization of biomolecular networks. However, recent study on hubs has suggested that there is no clear evidence for coexistence of 'party hubs' and 'date hubs'. Thus, an open question has been raised as to whether or not 'party hubs' and 'date hubs' truly exist in yeast interactome. METHODOLOGY: In contrast to previous studies focusing on the partners of a hub or the individual proteins around the hub, our work aims to study the network motifs of a hub or interactions among individual proteins including the hub and its neighbors. Depending on the relationship between a hub's network motifs and protein complexes, we define two new types of hubs, 'motif party hubs' and 'motif date hubs', which have the same characteristics as the original 'party hubs' and 'date hubs' respectively. The network motifs of these two types of hubs display significantly different features in spatial distribution (or cellular localizations), co-expression in microarray data, controlling topological structure of network, and organizing modularity. CONCLUSION: By virtue of network motifs, we basically solved the open question about 'party hubs' and 'date hubs' which was raised by previous studies. Specifically, at the level of network motifs instead of individual proteins, we found two types of hubs, motif party hubs (mPHs) and motif date hubs (mDHs), whose network motifs display distinct characteristics on biological functions. In addition, in this paper we studied network motifs from a different viewpoint. That is, we show that a network motif should not be merely considered as an interaction pattern but be considered as an essential function unit in organizing modules of networks

    Detection and Alignment of 3D Domain Swapping Proteins Using Angle-Distance Image-Based Secondary Structural Matching Techniques

    Get PDF
    This work presents a novel detection method for three-dimensional domain swapping (DS), a mechanism for forming protein quaternary structures that can be visualized as if monomers had “opened” their “closed” structures and exchanged the opened portion to form intertwined oligomers. Since the first report of DS in the mid 1990s, an increasing number of identified cases has led to the postulation that DS might occur in a protein with an unconstrained terminus under appropriate conditions. DS may play important roles in the molecular evolution and functional regulation of proteins and the formation of depositions in Alzheimer's and prion diseases. Moreover, it is promising for designing auto-assembling biomaterials. Despite the increasing interest in DS, related bioinformatics methods are rarely available. Owing to a dramatic conformational difference between the monomeric/closed and oligomeric/open forms, conventional structural comparison methods are inadequate for detecting DS. Hence, there is also a lack of comprehensive datasets for studying DS. Based on angle-distance (A-D) image transformations of secondary structural elements (SSEs), specific patterns within A-D images can be recognized and classified for structural similarities. In this work, a matching algorithm to extract corresponding SSE pairs from A-D images and a novel DS score have been designed and demonstrated to be applicable to the detection of DS relationships. The Matthews correlation coefficient (MCC) and sensitivity of the proposed DS-detecting method were higher than 0.81 even when the sequence identities of the proteins examined were lower than 10%. On average, the alignment percentage and root-mean-square distance (RMSD) computed by the proposed method were 90% and 1.8Å for a set of 1,211 DS-related pairs of proteins. The performances of structural alignments remain high and stable for DS-related homologs with less than 10% sequence identities. In addition, the quality of its hinge loop determination is comparable to that of manual inspection. This method has been implemented as a web-based tool, which requires two protein structures as the input and then the type and/or existence of DS relationships between the input structures are determined according to the A-D image-based structural alignments and the DS score. The proposed method is expected to trigger large-scale studies of this interesting structural phenomenon and facilitate related applications

    Integration of DNA Copy Number Alterations and Transcriptional Expression Analysis in Human Gastric Cancer

    Get PDF
    Background: Genomic instability with frequent DNA copy number alterations is one of the key hallmarks of carcinogenesis. The chromosomal regions with frequent DNA copy number gain and loss in human gastric cancer are still poorly defined. It remains unknown how the DNA copy number variations contributes to the changes of gene expression profiles, especially on the global level. Principal Findings: We analyzed DNA copy number alterations in 64 human gastric cancer samples and 8 gastric cancer cell lines using bacterial artificial chromosome (BAC) arrays based comparative genomic hybridization (aCGH). Statistical analysis was applied to correlate previously published gene expression data obtained from cDNA microarrays with corresponding DNA copy number variation data to identify candidate oncogenes and tumor suppressor genes. We found that gastric cancer samples showed recurrent DNA copy number variations, including gains at 5p, 8q, 20p, 20q, and losses at 4q, 9p, 18q, 21q. The most frequent regions of amplification were 20q12 (7/72), 20q12-20q13.1 (12/72), 20q13.1-20q13.2 (11/72) and 20q13.2-20q13.3 (6/72). The most frequent deleted region was 9p21 (8/72). Correlating gene expression array data with aCGH identified 321 candidate oncogenes, which were overexpressed and showed frequent DNA copy number gains; and 12 candidate tumor suppressor genes which were down-regulated and showed frequent DNA copy number losses in human gastric cancers. Three networks of significantly expressed genes in gastric cancer samples were identified by ingenuity pathway analysis. Conclusions: This study provides insight into DNA copy number variations and their contribution to altered gene expression profiles during human gastric cancer development. It provides novel candidate driver oncogenes or tumor suppressor genes for human gastric cancer, useful pathway maps for the future understanding of the molecular pathogenesis of this malignancy, and the construction of new therapeutic targets. © 2012 Fan et al.published_or_final_versio

    Differentiation and Recruitment of Th9 Cells Stimulated by Pleural Mesothelial Cells in Human Mycobacterium tuberculosis Infection

    Get PDF
    Newly discovered IL-9–producing CD4+ helper T cells (Th9 cells) have been reported to contribute to tissue inflammation and immune responses, however, differentiation and immune regulation of Th9 cells in tuberculosis remain unknown. In the present study, our data showed that increased Th9 cells with the phenotype of effector memory cells were found to be in tuberculous pleural effusion as compared with blood. TGF-β was essential for Th9 cell differentiation from naïve CD4+ T cells stimulated with PMA and ionomycin in vitro for 5 h, and addition of IL-1β, IL-4 or IL-6 further augmented Th9 cell differentiation. Tuberculous pleural effusion and supernatants of cultured pleural mesothelial cells were chemotactic for Th9 cells, and this activity was partly blocked by anti-CCL20 antibody. IL-9 promoted the pleural mesothelial cell repairing and inhibited IFN-γ-induced pleural mesothelial cell apoptosis. Moreover, pleural mesothelial cells promoted Th9 cell differentiation by presenting antigen. Collectively, these data provide new information concerning Th9 cells, in particular the collaborative immune regulation between Th9 cells and pleural mesothelial cells in human M. tuberculosis infection. In particular, pleural mesothelial cells were able to function as antigen-presenting cells to stimulate Th9 cell differentiation
    corecore