14 research outputs found

    A computationally lightweight algorithm for deriving reliable metabolite panel measurements from 1D 1H NMR.

    No full text
    Small Molecule Enhancement SpectroscopY (SMolESY) was employed to develop a unique and fully automated computational solution for the assignment and integration of 1H nuclear magnetic resonance (NMR) signals from metabolites in challenging matrices containing macromolecules (herein blood products). Sensitive and reliable quantitation is provided by instant signal deconvolution and straightforward integration bolstered by spectral resolution enhancement and macromolecular signal suppression. The approach is highly efficient, requiring only standard one-dimensional 1H NMR spectra and avoiding the need for sample preprocessing, complex deconvolution, and spectral baseline fitting. The performance of the algorithm, developed using >4000 NMR serum and plasma spectra, was evaluated using an additional >8800 spectra, yielding an assignment accuracy greater than 99.5% for all 22 metabolites targeted. Further validation of its quantitation capabilities illustrated a reliable performance among challenging phenotypes. The simplicity and complete automation of the approach support the application of NMR-based metabolite panel measurements in clinical and population screening applications

    In vitro nuclear magnetic resonance spectroscopy metabolic biomarkers for the combination of temozolomide with PI3K inhibition in paediatric glioblastoma cells.

    No full text
    Recent experimental data showed that the PI3K pathway contributes to resistance to temozolomide (TMZ) in paediatric glioblastoma and that this effect is reversed by combination treatment of TMZ with a PI3K inhibitor. Our aim is to assess whether this combination results in metabolic changes that are detectable by nuclear magnetic resonance (NMR) spectroscopy, potentially providing metabolic biomarkers for PI3K inhibition and TMZ combination treatment. Using two genetically distinct paediatric glioblastoma cell lines, SF188 and KNS42, in vitro 1H-NMR analysis following treatment with the dual pan-Class I PI3K/mTOR inhibitor PI-103 resulted in a decrease in lactate and phosphocholine (PC) levels (P<0.02) relative to control. In contrast, treatment with TMZ caused an increase in glycerolphosphocholine (GPC) levels (P≀0.05). Combination of PI-103 with TMZ showed metabolic effects of both agents including a decrease in the levels of lactate and PC (P<0.02) while an increase in GPC (P<0.05). We also report a decrease in the protein expression levels of HK2, LDHA and CHKA providing likely mechanisms for the depletion of lactate and PC, respectively. Our results show that our in vitro NMR-detected changes in lactate and choline metabolites may have potential as non-invasive biomarkers for monitoring response to combination of PI3K/mTOR inhibitors with TMZ during clinical trials in children with glioblastoma, subject to further in vivo validation
    corecore