8 research outputs found

    Protein-protein interaction based on pairwise similarity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interaction (PPI) is essential to most biological processes. Abnormal interactions may have implications in a number of neurological syndromes. Given that the association and dissociation of protein molecules is crucial, computational tools capable of effectively identifying PPI are desirable. In this paper, we propose a simple yet effective method to detect PPI based on pairwise similarity and using only the primary structure of the protein. The PPI based on Pairwise Similarity (PPI-PS) method consists of a representation of each protein sequence by a vector of pairwise similarities against large subsequences of amino acids created by a shifting window which passes over concatenated protein training sequences. Each coordinate of this vector is typically the E-value of the Smith-Waterman score. These vectors are then used to compute the kernel matrix which will be exploited in conjunction with support vector machines.</p> <p>Results</p> <p>To assess the ability of the proposed method to recognize the difference between "<it>interacted</it>" and "<it>non-interacted</it>" proteins pairs, we applied it on different datasets from the available yeast <it>saccharomyces cerevisiae </it>protein interaction. The proposed method achieved reasonable improvement over the existing state-of-the-art methods for PPI prediction.</p> <p>Conclusion</p> <p>Pairwise similarity score provides a relevant measure of similarity between protein sequences. This similarity incorporates biological knowledge about proteins and it is extremely powerful when combined with support vector machine to predict PPI.</p

    Bmi1 Is Down-Regulated in the Aging Brain and Displays Antioxidant and Protective Activities in Neurons

    Get PDF
    Aging increases the risk to develop several neurodegenerative diseases, although the underlying mechanisms are poorly understood. Inactivation of the Polycomb group gene Bmi1 in mice results in growth retardation, cerebellar degeneration, and development of a premature aging-like phenotype. This progeroid phenotype is characterized by formation of lens cataracts, apoptosis of cortical neurons, and increase of reactive oxygen species (ROS) concentrations, owing to p53-mediated repression of antioxidant response (AOR) genes. Herein we report that Bmi1 expression progressively declines in the neurons of aging mouse and human brains. In old brains, p53 accumulates at the promoter of AOR genes, correlating with a repressed chromatin state, down-regulation of AOR genes, and increased oxidative damages to lipids and DNA. Comparative gene expression analysis further revealed that aging brains display an up-regulation of the senescence-associated genes IL-6, p19Arf and p16Ink4a, along with the pro-apoptotic gene Noxa, as seen in Bmi1-null mice. Increasing Bmi1 expression in cortical neurons conferred robust protection against DNA damage-induced cell death or mitochondrial poisoning, and resulted in suppression of ROS through activation of AOR genes. These observations unveil that Bmi1 genetic deficiency recapitulates aspects of physiological brain aging and that Bmi1 over-expression is a potential therapeutic modality against neurodegeneration

    Influence of COVID-19 on lifestyle behaviors in the Middle East and North Africa Region: a survey of 5896 individuals

    Full text link
    Background: Coronavirus disease (COVID-19) pandemic has affected health and lifestyle behaviors of people globally. This project aims to identify the impact of COVID-19 on lifestyle behavior of individuals in the Middle East and North Africa (MENA) region during confinement. Methods: We conducted an online survey in 17 countries (Egypt, Jordan, United Arab Emirates, Kuwait, Bahrain, Saudi Arabia, Oman, Qatar, Yemen, Syria, Palestine, Algeria, Morocco, Libya, Tunisia, Iraq, and Sudan) from the MENA region on August and September 2020. The questionnaire included self-reported information on lifestyle behaviors, including physical activity, eating habits, smoking, watching television, social media use and sleep before and during the pandemic. Logistic regression was performed to analyze the impact of COVID-19 on lifestyle behaviors. Results: A total of 5896 participants were included in the final analysis and 62.8% were females. The BMI of the participants was 25.4 &plusmn; 5.8&nbsp;kg/m2. Around 38.4% of the participants stopped practicing any physical activities during the confinement (P &lt; 0.001), and 57.1% reported spending more than 2&nbsp;h on social media (P &lt; 0.001). There were no significant changes in smoking habits. Also, 30.9% reported an improvement in their eating habits compared with 24.8% reported worsening of their eating habits. Fast-food consumption decreased significantly in 48.8% of the study population. This direct/indirect exposure to COVID-19 was associated with an increased consumption of carbohydrates (OR = 1.09; 95% CI = 1.02&ndash;1.17; P = 0.01), egg (OR = 1.08; 95% CI = 1.02&ndash;1.16; P = 0.01), sugar (OR = 1.09; 95% CI = 1.02&ndash;1.16; P = 0.02), meat, and poultry (OR = 1.13; 95% CI = 1.06&ndash;1.20; P &lt; 0.01). There was also associated increase in hours spent on watching television (OR = 1.07; 95% CI = 1.02&ndash;1.12; P &lt; 0.01) and social media (OR = 1.09; 95% CI = 1.01&ndash;1.18; P = 0.03). However, our results showed a reduction in sleeping hours among those exposed to COVID-19 infection (OR = 0.85; 95% CI = 0.77&ndash;0.94; P &lt; 0.01). Conclusions: The COVID-19 pandemic was associated with an increase in food consumption and sedentary life. Being exposed to COVID-19 by direct infection or through an infected household is a significant predictor of amplifying these changes. Public health interventions are needed to address healthy lifestyle behaviors during and after the COVID-19 pandemic
    corecore